Refine Your Search

Search Results

Journal Article

Fast Active Sound Tuning System for Vehicle Powertrain Response

2015-06-15
2015-01-2220
This paper describes an active sound tuning (AST) system for vehicle powertrain response. Instead of simply aiming to attenuate cabin interior noise, AST system is capable of reshaping the powertrain response based on predetermined vehicle sound quality criteria. However, conventional AST systems cannot yield a balanced result over the broad frequency range when applied to powertrain noise. It is due to the fact that existing systems are typically configured with the filtered-x least mean square (FXLMS) algorithm or its modified versions, which has inherent frequency dependent convergence behavior due to large dynamic range of secondary path (the electro-acoustic path from the control speaker to the error microphone). Therefore, fast convergence can only be reached at the resonant frequencies.
Journal Article

Modified FxLMS Algorithm with Equalized Convergence Speed for Active Control of Powertrain Noise

2015-06-15
2015-01-2217
Current powertrain active noise control (ANC) systems are not sufficient enough to track the fast engine speed variations, and yield consistent convergence speeds for individual engine order such that a balanced noise reduction performance can be achieved over a broad frequency range. This is because most of these ANC systems are configured with the standard filtered-x least mean squares (FxLMS) algorithm, which has an inherent limitation in the frequency-dependent convergence behavior due to the existence of secondary path model (electro-acoustic path from the input of control loudspeaker to the output of monitoring error microphone) in the reference signal path. In this paper, an overview is given first to compare several recently modified FxLMS algorithms to improve the convergence speed for harmonic responses such as eigenvalue equalization FxLMS (EE-FXLMS) and normalized reference LMS (NX-LMS) algorithms.
Journal Article

Comparative Study of Adaptive Algorithms for Vehicle Powertrain Noise Control

2016-03-14
2016-01-9108
Active noise control systems have been gaining popularity in the last couple of decades, due to the deficiencies in passive noise abatement techniques. In the future, a novel combination of passive and active noise control techniques may be applied more widely, to better control the interior sound quality of vehicles. In order to maximize the effectiveness of this combined approach, smarter algorithms will be needed for active noise control systems. These algorithms will have to be computationally efficient, with high stability and convergence rates. This will be necessary in order to accurately predict and control the interior noise response of a vehicle. In this study, a critical review of the filtered-x least mean square (FXLMS) algorithm and several other newly proposed algorithms for the active control of vehicle powertrain noise, is performed. The analysis examines the salient features of each algorithm, and compares their system performance.
Technical Paper

Coupled Multi-Body Dynamic and Vibration Analysis of High-Speed Hypoid Geared Rotor System

2007-05-15
2007-01-2228
High speed, precision geared rotor systems are often plagued by excessive vibration and noise problems. The response that is primarily excited by gear transmission error is actually coupled to the large displacement rotational motion of the driveline system. Classical pure vibration model assumes that the system oscillates about its mean position without coupling to the large displacement motion. To improve on this approach and understanding of the influences of the dynamic coupling, a coupled multi-body dynamic and vibration simulation model is proposed. Even though the focus is on hypoid geared rotor system, the model is more general since hypoid and bevel gears have more complicated geometry and time and spatial-varying characteristics compared to parallel axis gears.
Technical Paper

Application of Analytic Wavelet Transform to Transient Signal Analyses

2007-05-15
2007-01-2321
The analytic wavelet transform (AWT) is a wavelet transform that works much like a transient Fourier transform. Therefore the AWT enables utilizing advantages of both the wavelet transform and Fourier transform. A special form of AWT developed for transient vibration and acoustics signal analyses is applied to various engineering signals in this paper. Application examples include a general time-frequency (T-F) analysis, analysis of exposures to impulsive vibrations and noises, and estimation of reverberation times. Some new definitions such as the T-F noise reduction and frequency weighted time history are defined by taking the advantage of unique capabilities of the AWT. Possible automotive applications of these new concepts are briefly discussed.
Technical Paper

A Dynamometer for Automobile Brake Squeal Study

2001-04-30
2001-01-1599
Automobile brake squeal has been experimentally studied in many ways over the past 65 years. A large body of published research and a substantial amount of unpublished work have attempted to experimentally define the variables involved with and describe the system dynamics initiating the friction-induced self-excited vibration. Much of this work has centered on pin on disk type test rigs used to characterize the contact mechanics and/or friction laws without considering the brake system influence. This paper describes a dynamometer designed and constructed to study brake squeal on a system level.
Technical Paper

Automotive NVH Research Instrumentation and Infrastructure at UC-SDRL

2003-05-05
2003-01-1689
This paper is intended to describe some of the advances in automotive NVH research and applications based on recent developments in the Structural Dynamics Research Laboratory (SDRL) at the University of Cincinnati. State-of-the-art vibro-acoustic research capabilities and infrastructure ranging from advanced vibration modal analysis and spectral techniques for linear and nonlinear automotive systems to computational tools for structure-borne acoustic noise generation, transmission and synthesis problems are discussed. These systems have been devised with the intent of integrating a versatile set of experimental, computational and analytical approaches in order to be able to investigate a variety of crucial automotive NVH concerns. The materials will be grouped into three separate but closely related sets of applications consisting of (i) powertrain noise and vibration control, (ii) analysis and control vehicle system dynamics, and (iii) NVH and sound quality.
Technical Paper

Application of FRF-Based Inverse Substructuring Analysis to Vehicle NVH Problems

2003-05-05
2003-01-1607
A multi-coordinate FRF-based inverse substructuring approach is proposed to partition a vehicle system into two or more substructures, which are coupled at discrete interface points. The joint and free substructure dynamic characteristics are then extracted from the coupled system response spectra. Depending on the actual form of the structural coupling terms, three forms of the coupling matrix are assumed here. The most general one constitutes the non-diagonal form, and the other two simpler cases are the block-diagonal and purely diagonal representations that can be used to simplify testing process and overcome computational problems. The paper is focused on the investigation of the durability of these three formulations when the input FRFs are noise contaminated. A finite element model of a simplified vehicle system is used as the case study.
Technical Paper

Source Identification Using Acoustic Array Techniques

1995-05-01
951360
Acoustic array techniques are presented as alternatives to intensity measurements for source identification in automotive and industrial environments. With an understanding of the advantages and limitations described here for each of the available methods, a technique which is best suited to the application at hand may be selected. The basic theory of array procedures for Nearfield Acoustical Holography, temporal array techniques, and an Inverse Frequency Response Function technique is given. Implementation for various applications is discussed. Experimental evaluation is provided for tire noise identification.
Technical Paper

Design Parameters for Comfortable and Safe Vehicle Seats

1997-02-24
971132
This paper discusses design parameters for automotive seats intended to simultaneously meet three design objectives: comfort, safety, and health. (“Health” refers to long-term spinal support and vibration attenuation.) For comfort, various ergonomic and human factors considerations are discussed ranging from seat dimensions and adjustments to cushioning and occupant perceptions of comfort. For safety, the principal consideration is the effectiveness of the seat in providing spinal support during accidents-particularly in rear-end collisions. An additional safety consideration is the ability of the seat to keep an occupant “in position” during an accident. Finally, for health concerns, the focus is upon maintenance of spinal stability, seat ergonomics, and road induced vibration attenuation. The paper presents design parameters satisfying these design objectives.
Technical Paper

Noise Source Identification in a Highly Reverberant Enclosure by Inverse Frequency Response Function Method: Numerical Feasibility Study

1997-05-20
971956
In highly reverberant enclosures, the identification of noise sources is a difficult and time consuming task. One effective approach is the Inverse Frequency Response Function (IFRF) method. This technique uses the inverse of an acoustic FRF matrix, that when multiplied by operating pressure response data reveals the noise source locations. Under highly reverberant conditions the deployment of a sound absorbing body is especially useful in reducing the effects of resonant modes that obscure important information in the FRFs. Without the absorption, the IFRF method becomes practically difficult to perform in these environments due to poor conditioning of the FRF matrix. This study investigates the feasibility of using Boundary Element and Finite Element Methods to establish the frequency response functions between selected panel points and microphones in the array.
Technical Paper

Practical Aspects of Perturbed Boundry Condition (PBC) Finite Element Model Updating Techniques

1997-05-20
971958
The perturbed boundary condition (PBC) model updating procedure has been developed to correct the finite element model [1]. The use of additional structural configurations adds more experimental information about the system and so better updating results can be expected. While it works well for simulated examples, practical limitations and additional requirements arise when it is used to update engineering structures. In this paper, the merits and the practical limitations of the techmques will be discussed in depth through the updating of a simulated system where the “measured” data is generated by computer and a real test structure where the experimentally measured data is noisy and distorted due to leakage. Useful suggestions and recommendations are drawn to guide the model updating of practical engineering structures.
Technical Paper

The Time Variant Discrete Fourier Transform as an Order Tracking Method

1997-05-20
972006
Present order tracking methods for solving noise and vibration problems are reviewed, both FFT and re-sampling based order tracking methods. The time variant discrete Fourier transform (TVDFT) is developed as an alternative order tracking method. This method contains many advantages which the current order tracking methods do not possess. This method has the advantage of being very computationally efficient as well as the ability to minimize leakage errors. The basic TVDFT method may also be extended to a more complex method through the use of an orthogonality compensation matrix (OCM) which can separate closely spaced orders as well as separate the contributions of crossing orders. The basic TVDFT is a combination of the FFT and the re-sampling based methods. This method can be formulated in several different manners, one of which will give results matching the re-sampling based methods very closely.
Technical Paper

Time Scale Re-Sampling to Improve Transient Event Averaging

1997-05-20
972005
As the drive to make automobiles more noise and vibration free continues, it has become necessary to analyze transient events as well as periodic and random phenomena. Averaging of transient events requires a repeatable event as well as an available trigger event. Knowing the exact event time, the data can be post-processed by re-sampling the time scale to capture the recorded event at the proper instant in time to allow averaging. Accurately obtaining the event time is difficult given the sampling restrictions of current data acquisition hardware. This paper discusses the ideal hardware needed to perform this type of analysis, and provides analytical examples showing the transient averaging improvements using time scale re-sampling. These improvements are applied to noise source identification of a single transient event using an arrayed microphone technique. With this technique, the averaging is performed using time delays between potential sources and microphones in the array.
Technical Paper

An Experimental Study of the Chassis Vibration Transmissibility Applying a Spectral-based Inverse Substructuring Technique

2005-05-16
2005-01-2470
A proposed multi-coordinate spectral-based inverse substructuring approach is applied experimentally to examine the vibration transmissibility through chassis mounts. In this formulation, the vehicle system is partitioned into two substructures. One substructure comprises of the chassis and suspension, while the second one is the body structure and other attached components. The approach yields the free substructure dynamic characteristics that are extracted from the measured coupled system response spectra. The resultant free substructure transfer functions are verified by comparison of the re-synthesized results to the actual vehicle system measurements. A real life vehicle setup is utilized to demonstrate the salient features and capabilities of this approach, which includes the ability to compute the main structure-borne paths, dynamic interactions between the chassis and body, and interior noise and vibration response.
Technical Paper

Evaluation of Sensors for Noise Path Analysis Testing

1999-05-17
1999-01-1859
Test sensors are evaluated for noise path analysis applications. Newly developed ICP™ piezo-electric strain gages are used with accelerometers and microphones in a conventional noise path analysis test on the front body/suspension attachment points of a vehicle. In a less conventional application, a steering knuckle is converted into a 6-DOF force transducer using an array of strain gages and using an array of 3-DOF load cells. The two sensor arrays are both calibrated with a 6-DOF load cell. The result is an estimate of the three translation force and three moment operating inputs entering the steering knuckle from the wheel.
Technical Paper

Development of an Algorithm to Automatically Detect and Distinguish Squeak and Rattle Noises

2015-06-15
2015-01-2258
Squeak and rattle (S&R) noises are undesirable noises caused by friction-induced vibration or impact between surfaces. While several computer programs have been developed to automatically detect and rate S&R events over the years, no reported work has been found that can detect squeak and rattle noises and distinguish them. Because the causes of squeak noises and rattle noises are different, knowing if it is a squeak noise or rattle noise will be very helpful for automotive engineers to choose an appropriate measure to solve the problem. The authors have developed a new algorithm to differentiate squeak noises and rattle noises, and added it to the S&R detection algorithm they had developed previously. The new algorithm utilizes a combination of sound quality metrics, specifically sharpness, roughness, and fluctuation strength.
Technical Paper

A Case Study: Application of Analytical and Numerical Techniques to Squeak and Rattle Analysis of a Door Assembly

2015-06-15
2015-01-2257
Squeak and rattle (S&R) problems in body structure and trim parts have become serious issues for automakers because of their influence on the initial quality perception of consumers. In this study, various CAE and experimental methods developed by Hyundai Motors for squeak and rattle analysis of door systems are reported. Friction-induced vibration and noise generation mechanisms of a door system are studied by an intelligent combination of experimental and numerical methods. It is shown that the effect of degradation of plastics used in door trims can be estimated by a numerical model using the properties obtained experimentally. Effects of changes in material properties such as Young's modulus and loss factor due to the material degradation as well as statistical variations are predicted for several door system configurations. As a new concept, the rattle and squeak index is proposed, which can be used to guide the design.
Technical Paper

Tuning Axle Whine Characteristics with Emphasis on Gear Dynamics and Psychoacoustics

2015-06-15
2015-01-2181
A combined lumped parameter, finite element (FE) and boundary element (BE) model is developed to predict the whine noise from rear axle. The hypoid geared rotor system, including the gear pair, shafts, bearings, engine and load, is represented by a lumped parameter model, in which the dynamic coupling between the engaging gear pair is represented by a gear mesh model condensed from the loaded tooth contact analysis results. The lumped parameter model gives the dynamic bearing forces, and the noise radiated by the gearbox housing vibration due to the dynamic bearing force excitations is calculated using a coupled FE-BE approach. Based on the predicted noise, a new procedure is proposed to tune basic rear axle design parameters for better sound quality purpose. To illustrate the salient features of the proposed method, the whine noise from an example rear axle is predicted and tuned.
Journal Article

Experimental Study on Enhanced FXLMS Algorithm for Active Impulsive Noise Control

2013-05-13
2013-01-1951
Active noise control (ANC) technique with the filtered-x least mean square (FXLMS) algorithm has proven its efficiency and drawn increasingly interests in vehicle noise control applications. However, many vehicle interior and/or exterior noises are exhibiting non-Gaussian type with impulsive characteristic, such as diesel knocking noise, injector ticking, impulsive crank-train noise, gear rattle, and road bumps, etc. Therefore, the conventional FXLMS algorithm that is based on the assumption of deterministic and/or Gaussian signal may not be appropriate for tackling this type of impulsive noise. In this paper, an ANC system configured with modified FXLMS (MFXLMS) algorithm by adding thresholds on reference and error signal paths is proposed for impulsive noise control. To demonstrate the effectiveness of the proposed algorithm, an experimental study is conducted in the laboratory.
X