Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Effects of Turbulence Modulation Addition in OpenFOAM® Toolkit on High Pressure Fuel Sprays

2011-04-12
2011-01-0820
The OpenFOAM® CFD methodology is nowadays employed for simulation in internal combustion engines and a lot of work has been done for an appropriate description of all complex phenomena. At the moment in the RANS turbulence models available in the OpenFOAM® toolbox the turbulence modulation is not yet included, and the present work analyzes the predictive capabilities of the code in simulating high injection pressure fuel sprays after modeling the influence of the dispersed phase on the turbulence structure. Different experiments were employed for the validation. At first, non-evaporating diesel spray was considered in a constant volume and quiescent vessel. The validation was performed via the available experimental spray evolution in terms of penetrations and spatial/temporal fuel distributions. Then the Sandia combustion chamber was chosen for diesel spray simulation in non-reacting conditions.
Technical Paper

Application of the CTC Model to Predict Combustion and Pollutant Emissions in a Common-Rail Diesel Engine Operating with Multiple Injections and High EGR

2012-04-16
2012-01-0154
Multiple injections and high EGR rates are now widely adopted for combustion and emissions control in passenger car diesel engines. In a wide range of operating conditions, fuel is provided through one to five separated injection events, and recirculated gas fractions between 0 to 30% are used. Within this context, fast and reliable multi-dimensional models are necessary to define suitable injection strategies for different operating points and reduce both the costs and time required for engine design and development. In this work, the authors have applied a modified version of the characteristic time-scale combustion model (CTC) to predict combustion and pollutant emissions in diesel engines using advanced injection strategies. The Shell auto-ignition model is used to predict auto-ignition, with a suitable set of coefficients that were tuned for diesel fuel.
Technical Paper

Injection of Hydrogen Peroxide into the Combustion Chamber of Diesel Engine: Effects on the Exhaust Gas Behaviour

2004-10-25
2004-01-2925
The improvement of the exhaust gas contents of diesel engines with respect to particles and gaseous emissions is still a very important engineering topic. In this work two different direct injection methods into the combustion chamber of a diesel engine have been investigated and compared. The first system involves the separate injection of H2O2/water solutions using a second nozzle, while the other is the injection of H2O2/water/diesel emulsions by a single injection system. It is known that H2O2 forms OH radicals at higher temperatures, whose probability for the oxidation of diesel soot is much higher than that of molecular oxygen [1]. The H2O2 injection into the combustion chamber [2] and the exhaust pipe of diesel engines [3] has proved to be an effective measure towards the reduction of diesel soot. A Differential Mobility Analyzer (DMA) is applied to detect the change in particle diameter as function of H2O2/water addition.
Technical Paper

Combustion Modeling in a Heavy-Duty Engine Operating with DME Using Detailed Kinetics and Turbulence Chemistry Interaction

2022-03-29
2022-01-0393
Dimethyl ether (DME) represents a promising fuel for heavy-duty engines thanks to its high cetane number, volatility, absence of aromatics, reduced tank-to-wheel CO2 emissions compared to Diesel fuel and the possibility to be produced from renewable energy sources. However, optimization of compression-ignition engines fueled with DME requires suitable computational tools to design dedicated injection and combustion systems: reduced injection pressures and increased nozzle diameters are expected compared to conventional Diesel engines, which influences both the air-fuel mixing and the combustion process. This work intends to evaluate the validity of two different combustion models for the prediction of performance and pollutant emissions in compression-ignition engines operating with DME. The first one is the Representative Interactive Flamelet while the second is the Approximated Diffusive Flamelet.
Technical Paper

Extension and Validation of a Constant Equivalence Ratio Multi-Zone Approach to DME Combustion in Vessels and CI Engines

2023-04-11
2023-01-0193
This work has the objective to present the extension of a novel quasi-dimensional model, developed to simulate the combustion process in diesel Compression Ignition (CI) engines, to describe this process when Dimethyl ether (DME) is used as fuel. DME is a promising fuel in heavy-duty CI engines application thanks to its high Cetane Number (CN), volatility, high reactivity, almost smokeless combustion, lower CO2 emission and the possibility to be produced with renewable energy sources. In this paper, a brief description of the thermodynamic model will be presented, with particular attention to the implementation of the Tabulated Kinetic Ignition (TKI) model, and how the various models interact to simulate the combustion process. The model has been validated against experimental data derived from constant-volume DME combustion, in this case the most important parameters analyzed and compared were the Ignition Delay (ID) and Flame Lift Off Length (FLOL).
Technical Paper

Automatic Mesh Generation for CFD Simulations of Direct-Injection Engines

2015-04-14
2015-01-0376
Prediction of in-cylinder flows and fuel-air mixing are two fundamental pre-requisites for a successful simulation of direct-injection engines. Over the years, many efforts were carried out in order to improve available turbulence and spray models. However, enhancements in physical modeling can be drastically affected by how the mesh is structured. Grid quality can negatively influence the prediction of organized charge motion structures, turbulence generation and interaction between in-cylinder flows and injected sprays. This is even more relevant for modern direct injection engines, where multiple injections and control of charge motions are employed in a large portion of the operating map. Currently, two different approaches for mesh generation exist: manual and automatic. The first makes generally possible to generate high-quality meshes but, at the same time, it is very time consuming and not completely free from user errors.
Technical Paper

A Coupled Tabulated Kinetics and Flame Propagation Model for the Simulation of Fumigated Medium Speed Dual-Fuel Engines

2019-09-09
2019-24-0098
The present work describes the numerical modeling of medium-speed marine engines, operating in a fumigated dual-fuel mode, i.e. with the second fuel injected in the ports. This engine technology allows reducing engine-out emissions while maintaining the engine efficiency and can be fairly easily retrofitted from current diesel engines. The main premixed fuel that is added can be a low-carbon one and can additionally be of a renewable nature, thereby reducing or even completely removing the global warming impact. To fully optimize the operational parameters of such a large marine engine, computational fluid dynamics can be very helpful. Accurately describing the combustion process in such an engine is key, as the prediction of the heat release and the pollutant formation is crucial. Auto-ignition of the diesel fuel needs to be captured, followed by the combustion and flame propagation of the premixed fuel.
Technical Paper

Cold Flow Simulation of a Dual-Fuel Engine for Diesel-Natural Gas and Diesel-Methanol Fuelling Conditions

2021-04-06
2021-01-0411
In this work, the possibility to perform a cold-flow simulation as a way to improve the accuracy of the starting conditions for a combustion simulation is examined. Specifically, a dual-fuel marine engine running on methanol/diesel and natural gas/diesel fueling conditions is investigated. Dual-fuel engines can provide a short-term solution to cope with the more stringent emission legislations in the maritime sector. Both natural gas and methanol appear to be interesting alternative fuels that can be used as main fuel in these dual-fuel engines. Nevertheless, it is observed that combustion problems occur at part load using these alternative fuels. Therefore, different methods to increase the combustion efficiency at part load are investigated. Numerical simulations prove to be very suitable hereto, as they are an efficient way to study the effect of different parameters on the combustion characteristics.
Journal Article

CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel

2021-04-06
2021-01-0409
Computational fluid dynamics (CFD) modeling has many potentials for the design and calibration of modern and future engine concepts, including facilitating the exploration of operation conditions and casting light on the involved physical and chemical phenomena. As more attention is paid to the matching of different fuel types and combustion strategies, the use of detailed chemistry in characterizing auto-ignition, flame stabilization processes and the formation of pollutant emissions is becoming critical, yet computationally intensive. Therefore, there is much interest in using tabulated approaches to account for detailed chemistry with an affordable computational cost. In the present work, the tabulated flamelet progress variable approach (TFPV), based on flamelet assumptions, was investigated and validated by simulating constant-volume Diesel combustion with primary reference fuels - binary mixtures of n-heptane and iso-octane.
X