Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Driver Response Time to Left-Turning Vehiclesat Traffic Signal Controlled Intersections

2018-04-03
2018-01-0521
Left-turn crashes account for almost one quarter of all collisions. Although research has quantified the response time of drivers to left-turning vehicles with high acceleration profiles, research is lacking for driver responses to realistic left-turning vehicle acceleration. The purpose of this research was to determine the Driver Response Time (DRT) to a left-turning vehicle from the first lateral movement of the left-turning vehicle. The DRT was measured from first lateral movement of the left turning vehicle, until the through driver reacts, whether by touching the brake pedal, swerving, releasing/applying the accelerator, or a combination of these inputs. Ninety-eight (NFemale = 48; NMale = 50) licensed volunteer drivers took part in a study at the University of Guelph Driving Research in Virtual Environments (DRiVE) lab using an Oktal complete vehicle driving simulator.
Technical Paper

Effects of Traffic Control Device and Hazard Location on Fixations During Intersection Navigation: A Simulator Study

2024-04-09
2024-01-2465
Collisions resulting in injuries or fatalities occur more frequently at intersections. This is partly because safe navigation of intersections requires drivers to accurately observe and respond to other road users with conflicting paths. Previous studies have raised questions about how traffic control devices and the positioning of other road users might affect drivers' visual search strategies when navigating intersections. To address these questions, four left-turn-across-path (LTAP) scenarios were created by combining two types of traffic control devices (stop signs and traffic lights) with two hazard starting locations (central and peripheral). Seventy-four licensed drivers responded to all scenarios in a counterbalanced order using a full vehicle driving simulator. Eye-tracking glasses were used to monitor eye movements, both before and after hazard onset.
X