Refine Your Search

Topic

Author

Search Results

Journal Article

Pedestrian Lower Extremity Response and Injury: A Small Sedan vs. A Large Sport Utility Vehicle

2008-04-14
2008-01-1245
Vehicle front-end geometry and stiffness characteristics have been shown to influence pedestrian lower extremity response and injury patterns. The goal of this study is to compare the lower extremity response and injuries of post mortem human surrogates (PMHS) tested in full-scale vehicle-pedestrian impact experiments with a small sedan and a large sport utility vehicle (SUV). The pelves and lower limbs of six PMHS were instrumented with six-degree-of-freedom instrumentation packages. The PMHS were then positioned laterally in mid-stance gait and subjected to vehicle impact at 40 km/h with either a small sedan (n=3) or a large SUV (n=3). Detailed descriptions of the pelvic and lower extremity injuries are presented in conjunction with global and local kinematics data and high speed video images. Injured PMHS knee joints reached peak lateral bending angles between 25 and 85 degrees (exceeding published injury criteria) at bending rates between 1.1 deg/ms and 3.7 deg/ms.
Technical Paper

Considerations for a Neck Injury Criterion

1991-10-01
912916
A kinematic analysis of the head-neck unit has been conducted in 37 simulated traffic accidents in order to investigate correlations between neck response and injuries. Belted fresh human cadavers in the age range 18 to 74 years have been used as front and rear-seat passengers. The analysed data included 23 frontal collisions, impact velocity 30 km/h, 50 km/h and 60 km/h, barrier impact and 14 90°-car to car lateral collisions with near-side passengers (6 cases) as well as far-side rear-seat passengers with an in-board upper anchoring point for the shoulder belt (8 cases). The head bending angle depended on the type of the collision. At the frontal collision, the mean head bending maxima amounted 79°, the evaluated mean angular velocity maxima and angular acceleration maxima corresponded to 41 rad/s and 2208 rad/s2, the mean maximum velocity in trajectory of the head was 10 m/s, the mean maximum acceleration along the path amounted 23 g.
Technical Paper

Response and Vulnerability of the Upper Arm Through Side Air Bag Deployment

1997-11-12
973323
The number of passenger cars equipped with side air bags is steadily increasing. With the aim of investigating the mechanical responses and the injuries of the arm under the influence of a side air bag, tests in probably higher injury risk configurations with dummies and cadavers were performed. The air bag was installed at the outer side of the seat back, with the subject seated in the driver or front passenger seat of a passenger car. During the inflation of the air bag, the left or right forearm of the subject was positioned on the arm rest while the upper arm made contact with the seat back edge. The volume of the thorax air bag was 15 litres and for the thorax-head air bag 28 litres. The dummy was instrumented at the thorax c.g. shoulder, elbow and wrist with triaxial accelerometers. In the cadaver, triaxial accelerations in three orthogonal directions were measured at the upper and the lower humerus, the upper radius and the lower radius and the first thoracic vertebrae.
Technical Paper

Comparative Performance Testing of Passenger Cars Relative to Fmvss 214 and the Ue 96/Ec/27 Side Impact Regulations: Phase I

1998-05-31
986168
Based on a long recognized need, the National Highway Traffic Safety Administration (NHTSA) has begun to reexamine the potential for international harmonization of side impact requirements. To this end, NHTSA, as directed by the U.S. Congress, has recently submitted a report to the Congress on the agency plans for achieving harmonization of the U.S. and European side impact regulations. The first phase of this plan involves crash testing vehicles compliant to FMVSS 214 to the European Union side impact directive 96/27/EC. This paper presents the results to date of this research. The level of safety performance of the vehicles based on the injury measures of the European and U.S. side impact regulations is assessed.
Technical Paper

Upper Neck Response of the Belt and Air Bag Restrained 50th Percentile Hybrid III Dummy in the USA's New Car Assessment Program

1998-11-02
983164
Since 1994, the New Car Assessment Program (NCAP) of the National Highway Traffic Safety Administration (NHTSA) has compiled upper neck loads for the belt and air bag restrained 50th percentile male Hybrid III dummy. Over five years from 1994 to 1998, in frontal crash tests, NCAP collected upper neck data for 118 passenger cars and seventy-eight light trucks and vans. This paper examines these data and attempts to assess the potential for neck injury based on injury criteria included in FMVSS No. 208 (for the optional sled test). The paper examines the extent of serious neck injury in real world crashes as reported in the National Automotive Sampling System (NASS). The results suggest that serious neck injuries do occur at higher speeds for crashes involving occupants restrained by belts in passenger cars.
Technical Paper

Large school bus safety restraint evaluation

2001-06-04
2001-06-0158
This paper describes ongoing research conducted by the National Highway Traffic Safety Administration (NHTSA) to evaluate the potential of safety restraints on large school buses. School bus transportation is one of the safest forms of transportation in the United States. Large school buses provide protection because of their visibility, size, and weight, as compared to other types of motor vehicles. Additionally, they are required to meet minimum Federal Motor Vehicle Safety Standards (FMVSS) mandating compartmentalized seating, emergency exits, roof crush and fuel system integrity, and minimum bus body joint strength.
Technical Paper

Pedestrian head impact testing and PCDS reconstructions

2001-06-04
2001-06-0184
Pedestrian research and testing at the NHTSA Vehicle Research and Test Center has recently focused on assessment of proposed ISO and EEVC head impact test procedures, and extension of these procedures to additional vehicle frontal surfaces. In addition to test parameter sensitivity evaluation, reconstruction of PCDS (Pedestrian Crash Data Study) cases with laboratory impact tests and computer simulations has been conducted. This paper presents the results of this research.
Technical Paper

PERFORMANCE EVALUATION OF DUAL STAGE PASSENGER AIR BAG SYSTEMS

2001-06-04
2001-06-0190
A research program was initiated to evaluate the performance of prototype dual stage passenger air bags in terms of both restraint system performance and deployment aggressivity for different size occupants. Variations in inflator partitions, vent hole diameter sizes, and deployment timing were examined. High speed unbelted sled tests were conducted with both 50th percentile male and 5th percentile female Hybrid III adult dummies at 48 kmph; and belted sled tests were conducted at 56 kmph. Low risk deployment tests with child dummies were conducted to evaluate air bag aggressivity. Overall, it was concluded that the dual stage air bag systems under evaluation had improved performance over the baseline single stage systems in terms of providing high speed protection while reducing aggressivity to out-of-position occupants; however, some dual stage systems may require additional occupant detection methodologies to suppress or control inflation.
Technical Paper

NHTSA'S research program for vehicle aggressivity and fleet compatibility

2001-06-04
2001-06-0179
This paper presents an overview of NHTSA's vehicle aggressivity and fleet compatibility research activities. This research program is being conducted in close cooperation with the International Harmonized Research Agenda (IHRA) compatibility research group. NHTSA is monitoring the changing vehicle mix in the U.S. fleet, analyzing crash statistics, and evaluating any implications that these changes may have for U.S. occupant safety. NHTSA is also continuing full-scale crash testing to develop a better understanding of vehicle compatibility and to investigate test methods to assess vehicle compatibility.
Technical Paper

Response and vulnerability of the ankle joint in simulated footwell intrusion experiments~A study with cadavers and dummies

2001-06-04
2001-06-0212
The prevention of lower extremity injuries to front seat car occupants is a priority because of their potential to cause long-term impairment and disability. To determine the types and mechanisms of lower extremity injuries in frontal collisions, studies under controlled test conditions are needed. Sled tests using belt-restrained cadavers and dummies were conducted, in which footwell intrusion was simulated via a plane surface or simulated brake pedal. Human cadavers in the age range from 30 to 62 years and Hybrid III dummies were used. The footwell intrusion had both translational (135 mm) and rotational (30 degrees) components. Maximum footwell intrusion forces and accelerations were measured. The lower legs were instrumented with accelerometers and a ""six axis'' force-moment transducer was mounted in the mid shaft of the left tibia.
Technical Paper

Simulations of large school bus safety restraints~NHTSA

2001-06-04
2001-06-0226
This paper describes computer crash simulations performed by the National Highway Traffic Safety Administration (NHTSA) under the current research and testing activities on large school bus safety restraints. The simulations of a frontal rigid barrier test and comparative dynamic sled testing for compartmentalization, lap belt, and lap/shoulder belt restraint strategies are presented. School bus transportation is one of the safest forms of transportation in the United States. School age children transported in school buses are safer than children transported in motor vehicles of any other type. Large school buses provide protection because of their size and weight. Further, they must meet minimum Federal motor vehicle safety standards (FMVSSs) mandating compartmentalized seating, improved emergency exits, stronger roof structures and fuel systems, and better bus body joint strength.
Technical Paper

Evaluation of the ES-2 dummy in representative side impacts

2001-06-04
2001-06-0096
An upgrade of EUROSID-1, the side impact dummy used in the European Union Side Impact Directive 96/EC/27, was recently developed by TNO to address dummy response issues raised by industrial and governmental bodies, in particular, the flat-top anomaly in the rib deflections. NHTSA is evaluating the ES-2 dummy, the upgraded EUROSID-1, to assess its performance in the FMVSS 214 test configuration. This paper presents results from NHTSA's testing of the ES-2 including high mass pendulum impactor tests using three proposed rib designs, biofidelity sled tests comparing the ES-2 and U.S. SID, and full-scale side impact tests.
Technical Paper

Design of Temperature Insensitive Ribs for Crash Test Dummies

2003-03-03
2003-01-0502
The Isodamp damping material (also known as Navy Damp) used in the ribs of current crash test dummies provides human-like damping to the thorax under impact. However, the range of temperature over which it can be used is very small. A new rib design using laminates of steel, fiberglass, and commercially available viscoelastic material has been constructed. Load-deflection response and hysteresis of the laminated ribs were compared with corresponding conventional ribs fabricated from steel and Isodamp. Impact tests were conducted on laminated and conventional ribs at 18.5° C, 22.2° C and 26.6° C. Results indicate that the response of the laminated ribs is essentially the same as that of the ribs with Isodamp at 22.2° C, which is the operating temperature of the conventional ribs. The variation in the impact response of the newly developed laminated ribs in the temperature range of 18.5° C to 26.6° C was less than 10%.
Technical Paper

The SISAME Methodology for Extraction of Optimal Lumped Parameter Structural Crash Models

1992-02-01
920358
The SISAME methodology is a system for extracting one-dimensional lumped parameter vehicle crash models from non-oblique crash test data, and for simulation of such models. Model extraction is based on constrained least squares optimization of an overdetermined system of target equations for the model parameters. The SISAME computer program performs extraction and simulation with a number of features that allow user control of the computations and outputs. Additional computer programs perform data assessment/correction and filtering. Experience has shown that the SISAME methodology can efficiently produce predictively useful models that accurately capture the motions of the actual crash event. The essential formulation of SISAME and some sample applications are presented in this paper.
Technical Paper

Frontal Air Bag Deployment in Side Crashes

1998-02-23
980910
NHTSA conducted seventy-six side impact FMVSS No. 214 compliance tests from 1994 through 1997. The compliance tests are nearly right angle side impacts with low longitudinal components of change of velocity (Δv). Frontal air bag deployments were found to have occurred for 34% of the driver bags and 32% of the front passenger bags in these compliance-tested passenger cars. In 1997, NHTSA began testing passenger cars 'in side impact in the New Car Assessment Program (NCAP). The NCAP crash tests are conducted at a higher speed than the compliance tests. The cars in the NCAP side impact tests also had low longitudinal components of Δv. Approximately 40% of the twenty-six passenger cars tested in the 1997 Side Impact NCAP had their frontal air bags deploy. Real world crash data were examined to determine if frontal air bags are deploying in right angle side impacts on the roads of the US.
Technical Paper

AN ANALYSIS OF NCAP SIDE IMPACT CRASH DATA

1998-05-31
986235
Since 1990, the National Highway Traffic Safety Administration (NHTSA) implemented a dynamic side impact compliance test. This compliance test, Federal Motor Vehicle Safety Standard (FMVSS) No. 214, is a nearly right angle side impact in which the striking vehicle moves at 53.6 kmph into the struck vehicle. In 1997, NHTSA began testing passenger cars in side impact in the New Car Assessment Program (NCAP). In the USA NCAP side impact, the striking vehicle is towed at a 8 kmph higher speed than in the compliance test. An analysis has begun on the data from the first NCAP side impact tests, thirty-two in number. In the crashes, accelerometers were installed in the door and door frames of the struck vehicle. Using the accelerometers on the vehicle structure and in the side impact dummy, the crash event was investigated. One tool used in the investigation was the velocity-versus-time diagram.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Head and Neck Injury Resulting from Low Velocity Direct Impact

1993-11-01
933112
21 low velocity direct occipital and lateral head impacts were performed on 17 cadavers. Both damped and undamped impacts were performed at impact velocities of between 2.8 and 6.1 m/s. Head responses were measured using a 9-accelerometer array, and in 8 cases epidural pressure was measured at the contre-coup site. Base of skull and temporal fractures of AIS severity 3 or 4 were produced with undamped impacts at velocities greater than 4.0 m/s. Brain injuries were also observed; these were subdural and sub-arachnoid haematomas of AIS severity 3 or 4. Only minor cervical spine injuries were observed. Head responses were calculated from the 9-accelerometer array data. Linear centre of gravity head acceleration, HIC and angular accelerations are presented. Angular acceleration time-histories calculated with this method appear to be sensitive to local skull deformations and shock wave transmission.
Technical Paper

The New Car Assessment Program - Historical Review and Effect

1994-03-01
941052
This report is a condensed version of the December 1993 New Car Assessment Program (NCAP) report to Congress and provides: an historical review and future goals for NCAP. the results of an 18-month study to assess consumer and media needs in understanding and promoting the use of NCAP data. This included consumer focus groups and media studies. These studies indicated that consumers and the media desire comparative safety information on vehicles, a simplified NCAP format to better understand and utilize the crash test results, and would like to see NCAP expanded to include other crash modes. studies of real-world crashes versus NCAP crash tests. These studies conclude that NCAP test conditions approximate real-world crash conditions covering a major segment of the frontal crash safety problem and that there is a significant correlation between NCAP results and real-world fatality risks for restrained drivers.
Technical Paper

Evaluation of Car-to-Car Frontal Offset Impact Finite Element Models Using Full Scale Crash Data

1995-02-01
950650
This paper describes the results of a study conducted to evaluate the performance and accuracy of a medium size sedan finite element model for off-set car-to-car impacts. This model was originally developed for front impact and does not include side structure compliance. Two tests conducted by the National Highway Traffic Safety Administration are used for evaluation of the simulations. The overall results indicate that the simulations appear to be consistent with the crash test data. Problems associated with the use of node constraints, lack of side structure model fidelity, and the different integration time marching are identified and solutions for the problems are proposed.
X