Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

An Enhanced Computer-Based Process Simulation Model for the Cylinder Boring Process

1991-04-01
910957
This paper discusses an advanced computer-based process simulation model to predict cutting forces and surface error (also referred to as the lack of cylindricity) for the cylinder boring process. The model takes into consideration several enhanced features including dual and multiple-cylinder boring, back-boring, boring in the presence of windows/cavities, etc.. The model makes use of a Finite Element product model and the cutting force process model to generate a surface error profile at any axial level in the cylinder bore. A design of experiment approach is employed to study the influence of various process variables on bore surface error. The enhanced process simulation model may be used as a valuable tool in enhancing the simultaneous engineering of products and manufacturing processes.
Technical Paper

An Experimental and Analytical Study of the Fatigue Life of Weldments with Longitudinal Attachments

2001-03-05
2001-01-0085
Both the experimental results and the analytical predictions of this study confirm that the poor fatigue performance of weldments with longitudinal attachments is due to poor weld quality which in turn leads to either a cold-lap or a very small weld toe radius. as well as to the combination of a very high 3-D stress concentration, and very high tensile residual stresses. Consequently, a specially designed stress-concentration-reducing part termed “stress diffuser” incorporated in the wrap-around welds at the ends of the longitudinal attachments increased the fatigue strength of longitudinal attachments to equal that of transverse attachments but only when cold-laps were eliminated. The fatigue life predictions made using the a two-stage Initiation-Propagation (IP) Model were in good agreement with the experimental results. Procedures for correcting for the curved shape of the crack path are investigated.
Technical Paper

Development and Validation of a Model for Predicting Hand Prehensile Movements

2006-07-04
2006-01-2329
A prediction model for hand prehensile movements was developed and validated. The model is based on a new approach that blends forward dynamics and a simple parametric control scheme. In the development phase, model parameters were first estimated using a set of hand grasping movement data, and then statistically analyzed. In the validation phase, the model was applied to novel conditions created by varying the subject group and size of the object grasped. The model performance was evaluated by the prediction errors under various novel conditions as compared to the benchmark values with no extrapolation. Analyses of the model parameters led to insights into human movement production and control. The resulting model also offers computational simplicity and efficiency, a much desired attribute for digital applications.
Technical Paper

Analysis of Residual Stresses and Cyclic Deformation for Induction Hardened Components

1995-02-01
950707
Induction hardening of mild steel components often results in significant improvements in the static and cyclic load capability, with comparatively small increases in cost. Members subjected primarily to torsional loading are a relevant subset of the broad range of induction hardened components. Due to the variation of material properties and residual stresses, failures are “initiated” at the traditional geometric locations predicted for homogeneous materials and also at subsurface sites. The introduction of shear based fatigue parameters has necessitated the consideration of the residual stress as a three dimensional quantity, especially when analyzing subsurface failures. Not considering the tensoral nature of the residual stress can lead to serious errors when estimating fatigue life, and for larger magnitude loadings, the residual stress field may relax.
Technical Paper

Ventilated Brake Rotor Air Flow Investigation

1997-02-24
971033
Air flow through the passages of a Chrysler LH platform ventilated brake rotor is measured. Modifications to the production rotor's vent inlet geometry are prototyped and measured in addition to the production rotor. Vent passage air flow is compared to existing correlations. The inlet modifications show significantly improved vent air flow, over the production rotor. The result improvement in heat transfer and rotor cooling is reported. These benefits in performance should be attainable at very low increases in production cost.
Technical Paper

Machinability of MADI™

2005-04-11
2005-01-1684
High strength materials have desirable mechanical properties but often cannot be machined economically, which results in unacceptably high finished component cost. MADI™ (machinable austempered ductile iron) overcomes this difficultly and provides the highly desirable combination of high strength, excellent low temperature toughness, good machinability and attractive finished component cost. The Machine Tool Systems Research Laboratory at the University of Illinois at Urbana-Champaign performed extensive machinability testing and determined the appropriate tools, speeds and feeds for milling and drilling (https://netfiles.uiuc.edu/malkewcz/www/MADI.htm). This paper provides the information necessary for the efficient and economical machining of MADI™ and provides comparative machinability data for common grades of ductile iron (EN-GJS-400-18, 400-15, 450-10, 500-7, 600-3 & 700-2) for comparison.
Technical Paper

An Empirical Method for Estimating the Fatigue Resistance of Tensile-Shear Spot Welds

1983-02-01
830035
An empirical method which is based principally on estimates of the fatigue crack initiation life (NI) has been developed which predicts the fatigue resistance of tensile-shear spot welds in the long life regime. The method uses Basquin’s law and Peterson’s equation to estimate NI and thus is founded on the fatigue behavior of smooth specimens and modelling of the fatigue notch size effect. The fatigue notch factor (Kf) required in this analysis was obtained from Pook’s relationships for the stress intensity factors of tensile-shear spot welds. Estimates of NI are added to estimates of the fatigue crack propagation life NP to obtain the total fatigue life (NT) but in the long life regime NP can usually be neglected. The improvement of tensile-shear spot weld fatigue resistance through manipulation of geometry and material property variables are discussed with the aid of the model.
Technical Paper

A Fatigue Life Prediction Method for Tensile-Shear Spot Welds

1985-02-01
850370
An empirical Three Stage Initiation-Propagation (TSIP) model has been developed which predicts the fatigue resistance of tensile-shear spot welds under constant amplitude loading. The improvements of tensile-shear spot weld fatigue resistance caused by changes in weld geometry, residual stresses and material properties variables are discussed with the aid of the model. The TSIP model suggests that, in addition to the influence of geometry, residual stresses at the site of crack initiation greatly influence the fatigue resistance of tensile-shear spot welds. The TSIP model predicts that material properties play a subtle role in determining the fatigue resistance of tensile-shear spot welds.
X