Refine Your Search

Topic

Search Results

Journal Article

The Application of the Vincent Circle to Vibro-Acoustic and Duct Acoustic Problems

2009-05-19
2009-01-2215
Over 30 years ago, A. H. Vincent of Westland Helicopters demonstrated that if a structure is excited harmonically, the response at another position (at a fixed frequency) will trace a circle in the complex plane as a result of a dynamic stiffness modification between two points. As either the real or imaginary part of an introduced dynamic stiffness is varied from minus infinity to plus infinity, the structural or acoustic response on any position will map a circle in the complex plane. This paper reviews the basis for this little known principle for vibro-acoustics problems and illustrates the viability for a cantilevered plate example. The applicability of the method is then considered for strictly acoustic systems like intake and exhaust systems. Specifically, it is shown that the response traces a circle in the complex plane if either the real or imaginary parts of the source or termination impedance are varied from minus to plus infinity.
Journal Article

Adding Bypass Ducts to Enhance Muffler Performance without Increasing Size

2013-05-13
2013-01-1882
It was demonstrated that a bypass duct similar to a Herschel- Quincke tube could be used to increase the transmission loss of mufflers at selected frequencies. In many cases, the duct can be short and thought of as a leak. It was shown that the optimal length and cross-sectional area could be determined by using a simple optimization technique known as the Vincent Circle. Most importantly, it was demonstrated that the attenuation at low frequencies could be improved by as much as 15 dB. To prove the concept, a muffler was designed and optimized using transfer matrix theory. Then, the optimized muffler was constructed and the transmission loss measured using the two-load method. The measured results compared well with prediction from transfer matrix theory. Boundary element simulation was then used to further study the attenuation mechanism.
Journal Article

Using the Reciprocal Work Identity to Evaluate the Transmission Loss of Mufflers

2013-05-13
2013-01-1888
Transmission loss (TL) is a good performance measure of mufflers since it represents the muffler's inherent capability of sound attenuation. There are several existing numerical methods, which have been widely used to calculate the TL from numerical simulation results, such as the four-pole and three-point methods. In this paper, a new approach is proposed to evaluate the transmission loss based on the reciprocal work identity. The proposed method does not assume plane wave propagation in the inlet and outlet ducts, and more importantly, does not explicitly apply the anechoic termination impedance at the outlet. As a result, it has the potential of extending TL computation above the plane wave cut-off frequency.
Technical Paper

Design of Double-Tuned Helmholtz Resonators Created by Punching Small Slots on a Thin-Walled Tube to Reduce Low-Frequency Tonal Noise

2021-08-31
2021-01-1040
Helmholtz resonators are often used in the design of vehicle mufflers to target tonal noise at a few specific low frequencies generated by the engine. Due to the uncertainty of temperature variations and different engine speeds, multiple resonators may have to be built in series to cover a narrow band of frequencies. Double-tuned Helmholtz resonators (DTHR) normally consist of two chambers connected in series. Openings or necks are created by punching small slots into a thin-walled tube which provide a natural neck passage to the enclosing volume of the Helmholtz resonator. In this paper, numerical analyses using both the boundary element (BEM) and the finite element (FEM) methods are performed and simulation results are compared against one another. A typical real-world muffler configuration commonly used in passenger vehicles is used in a case study.
Journal Article

Numerical Determination of Transfer Impedance for Perforates

2015-06-15
2015-01-2312
A simplified method to model perforated tubes in mufflers is the equivalent transfer impedance approach. Various empirical formulas that consider the porosity, hole diameter, wall thickness, and flow type have been proposed to date. They normally work very well under the conditions that the formulas are intended for. However, there are situations that the empirical formulas may not be able to cover. In this paper, we propose a simple BEM-based numerical procedure to determine the transfer impedance from a small perforate sample, and then send the transfer impedance to the muffler BEM model for analysis purposes. Numerical results are verified in three test cases.
Journal Article

The Effect of Phase Difference between Inputs on Insertion Loss for a Two-Inlet Muffler

2015-06-15
2015-01-2305
A recently developed superposition approach for determining the insertion loss of a two-inlet muffler is reviewed. To validate the approach, calculated and measured insertion losses are compared for a small engine muffler with two inlets and one outlet. After which, the phasing between the two inputs is varied and the insertion loss is evaluated. Results show that the insertion loss is strongly affected by the phasing between sources at low frequencies while phasing between sources has a lesser impact at high frequencies. At the conclusion of the paper, the theory for applying the superposition approach to transmission loss is reviewed.
Journal Article

Finite Element Analysis of Piezoelectric Composite Actuators

2011-04-12
2011-01-0218
Piezoelectric materials are smart materials that can undergo mechanical deformation when electrically or thermally activated. An electric voltage is generated on the surfaces when a piezoelectric material is subjected to a mechanical stress. This is referred to as the ‘direct effect’ and finds application as sensors. The external geometric form of this material changes when it is subjected to an applied voltage, known as ‘converse effect’ and has been employed in the actuator technology. Such piezoelectric actuators generate enormous forces and make highly precise movements that are extremely rapid, usually in the micrometer range. The current work is focused towards the realization and hence application of the actuator technology based on piezoelectric actuation. Finite element simulations are performed on different types of piezoelectric actuations to understand the working principle of various actuators.
Journal Article

Investigation of the Acoustic Performance of After Treatment Devices

2011-05-17
2011-01-1562
Diesel engines produce harmful exhaust emissions and high exhaust noise levels. One way of mitigating both exhaust emissions and noise is via the use of after treatment devices such as Catalytic Converters (CC), Selective Catalytic Reducers (SCR), Diesel Oxidation Catalysts (DOC), and Diesel Particulate Filters (DPF). The objective of this investigation is to characterize and simulate the acoustic performance of different types of filters so that maximum benefit can be achieved. A number of after treatment device configurations for trucks were selected and measured. A measurement campaign was conducted to characterize the two-port transfer matrix of these devices. The simulation was performed using the two-port theory where the two-port models are limited to the plane wave range in the filter cavity.
Technical Paper

Effects of Seal Viscoelastic Properties on Engine Exterior Cover Noise and Vibration

2007-05-15
2007-01-2285
Engine exterior cover seals are typically made of elastomeric materials and used to seal the interfaces. The design of engine/transmission seals has been traditionally considered from the sealibility aspects. Recently, there have been additional demands that these seals be designed to reduce the vibration transmitted from engine/transmission and to attenuate the radiated noise. To accomplish this goal, the frequency-dependent viscoelastic properties of the seals will have to be considered. This article examines the frequency-dependent viscoelastic properties of some common elastomeric seals. The impacts of these materials on an engine valve cover noise and vibration are particularly investigated. Some design strategies are also discussed to optimize the viscoelastic effects of the elastomeric seals.
Technical Paper

Accurate Measurement of Small Absorption Coefficients

2007-05-15
2007-01-2224
In this paper procedures for estimating the sound absorption coefficient when the specimen has inherently low absorption are discussed. Examples of this include the measurement of the absorption coefficient of pavements, closed cell foams and other barrier materials whose absorption coefficient is nevertheless required, and the measurement of sound absorption of muffler components such as perforates. The focus of the paper is on (1) obtaining an accurate phase correction and (2) proper correction for tube attenuation when using impedance tube methods. For the latter it is shown that the equations for tube attenuation correction in the standards underestimate the actual tube attenuation, leading to an overestimate of the measured absorption coefficient. This error could be critical, for example, when one is attempting to qualify a facility for the measurement of pass-by noise.
Technical Paper

Using Boundary Element Analysis to Analyze Multi-Component Exhaust Systems

2007-05-15
2007-01-2182
A process for predicting the transmission and insertion losses of multi-component exhaust systems is detailed in this paper. A two-tiered process incorporating boundary element analysis to evaluate multi-component systems is implemented. At the component level, the boundary element method is used to predict the transfer matrix for larger components where plane wave behavior is not expected within the component. The transfer matrix approach is then used to predict insertion loss for built-up systems with interconnecting duct or pipe work. This approach assumes plane wave behavior at the inlet and outlet of each component so it is limited to the low frequency regime. Results are compared with experimental results for HVAC systems.
Technical Paper

Characterize the High-Frequency Dynamic Properties of Elastomers Using Fractional Calculus for FEM

2007-05-15
2007-01-2417
Finite element modeling has been used extensively nowadays for predicting the noise and vibration performance of whole engines or subsystems. However, the elastomeric components on the engines or subsystems are often omitted in the FE models due to some known difficulties. One of these is the lack of the material properties at higher frequencies. The elastomer is known to have frequency-dependent viscoelasticity, i.e., the dynamic modulus increases monotonically with frequency and the damping exhibits a peak. These properties can be easily measured using conventional dynamic mechanical experiments but only in the lower range of frequencies. The present paper describes a method for characterizing the viscoelastic properties at higher frequencies using fractional calculus. The viscoelastic constitutive equations based on fractional derivatives are discussed. The method is then used to predict the high frequency properties of an elastomer.
Technical Paper

Expanding the Small UAV Design Space with Inflatable Wings

2007-09-17
2007-01-3911
The paper presents work on development, testing and vehicle integration of inflatable wings for small UAVs. Recent advances in the design of inflatable lifting surfaces have removed previous deterrents to their use and multiple wing designs have been successfully flight tested on UAVs. Primary benefits of inflatable wings include stowability (deploy upon command) and robustness (highly resistant to damage). The inflatable planforms can be either full- or partial-span designs allowing a large design space and mission adaptability. The wings can be stowed when not in use and inflated prior to or during flight. Since inflatable designs have improved survivability over rigid wings, this has the prospect of increasing vehicle robustness and combat survivability. Damage resistance of inflatable wings is shown from results of laboratory and flight tests.
Technical Paper

BEM Modeling of Mufflers with Diesel Particulate Filters and Catalytic Converters

2009-05-19
2009-01-2225
In this paper, the transmission loss (TL) of mufflers with a built-in catalytic converter (CC) and/or a diesel particulate filter (DPF) is predicted using the boundary element method (BEM) by either modeling the CC or DPF as a block of bulk-reacting material or by using the “element-to-element four-pole connection” between two BEM substructures. The four-pole parameters of the CC or DPF can be obtained by a measurement procedure that involves using the two-source method on a test rig with a pair of transition cones followed by a few 1-D four-pole matrix inverse operations to extract the parameters. A 3-D BEM based optimization may be further applied to fine-tune the extracted four-pole parameters. To use the bulk-reacting material modeling in BEM, the four-pole parameters will have to be converted into an equivalent set of bulk-reacting material properties. Test cases including a muffler with a series connection of CC and DPF are presented in this paper.
Technical Paper

Load Effect on Source Impedance Measurement Accuracy

2009-05-19
2009-01-2041
The source in an intake/exhaust system is commonly modeled as a source strength and impedance combination. Both the strength and impedance are normally measured and measurement accuracy depends on selecting an appropriate acoustic load combination. An incident wave decomposition method is proposed which is based on acoustic wave decomposition concepts instead of an electric circuit analogy providing a more straightforward approach to investigating the effect of acoustic load selection. Based on studying wave reflections in the system, the uncertainty for determining source impedance is estimated.
Technical Paper

A Review of Current Techniques for Measuring Muffler Transmission Loss

2003-05-05
2003-01-1653
The most common approach for measuring the transmission loss of a muffler is to determine the incident power by decomposition theory and the transmitted power by the plane wave approximation assuming an anechoic termination. Unfortunately, it is difficult to construct a fully anechoic termination. Thus, two alternative measurement approaches are considered, which do not require an anechoic termination: the two load method and the two-source method. Both methods are demonstrated on two muffler types: (1) a simple expansion chamber and (2) a double expansion chamber with an internal connecting tube. For both cases, the measured transmission losses were compared to those obtained from the boundary element method. The measured transmission losses compared well for both cases demonstrating that transmission losses can be determined reliably without an anechoic termination. It should be noted that the two-load method is the easier to employ for measuring transmission loss.
Technical Paper

Methods for Determining Muffler Transmission Loss in Octave Bands

2016-04-05
2016-01-1317
Insertion loss in one-third or octave bands is widely used in industry to assess the performance of large silencers and mufflers. However, there is no standard procedure for determining the transmission loss in one-third or octave bands using measured data or simulation. In this paper, assuming that the source is broadband, three different approaches to convert the narrowband transmission loss data into one-third and octave bands are investigated. Each method is described in detail. To validate the three different approaches, narrowband transmission loss data of a simple expansion chamber and a large bar silencer is converted into one-third and octave bands, and results obtained from the three approaches are demonstrated to agree well with one another.
Technical Paper

Numerical Simulation of Diesel Particulate Filters in Exhaust Systems

2011-05-17
2011-01-1559
This paper documents a finite element approach to predict the attenuation of muffler and silencer systems that incorporate diesel particulate filters (DPF). Two finite element models were developed. The first is a micro FEM model, where a subset of channels is modeled and transmission matrices are determined in a manner consistent with prior published work by Allam and Åbom. Flow effects are considered at the inlet and outlet to the DPF as well as viscous effects in the channels themselves. The results are then used in a macro FEM model of the exhaust system where the transmission relationship from the micro-model is used to simulate the DPF. The modeling approach was validated experimentally on an example in which the plane wave cutoff frequency was exceeded in the chambers upstream and downstream to the DPF.
Technical Paper

Heat Transfer in Two-Dimensional Jet Impingement of a Dielectric Liquid on to a Flat Plate With Uniform Heat Flux

1992-10-01
921943
Experiments were performed to investigate the convective heat transfer from a two-dimensional slot jet of the dielectric liquid PAO to a smooth 15.2 mm by 9.5 mm film resistor surface. The effects of nozzle width, nozzle-to-plate distance, impinging velocity, and liquid properties have been examined. Heat transfer correlations and a discussion of relative parametric effects are provided.
Technical Paper

Four-Phase Switch Reluctance Machines for More Electric Aircraft Power Generation

1995-05-01
951453
The development of the more electric aircraft is in progress. An important part of more electric aircraft concept is the integral starter/generator (ISG) mounted on the shaft of the jet engine. The prime candidate technology for the ISG is a system based on the switched reluctance motor (SRM). Switched reluctance technology has been chosen for this application because the a single failure does not lead to a complete loss of electrical power. In fact, each phase of the SRM is essentially independent of every other phase. Thus it is possible to be able to loose a single phase as a result of a fault and still remain operational with all of the other phases. This characteristic of the SRM has been referred to as fault tolerance and it is a very important characteristic when there is only one generator per engine.
X