Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Expanding the Small UAV Design Space with Inflatable Wings

2007-09-17
2007-01-3911
The paper presents work on development, testing and vehicle integration of inflatable wings for small UAVs. Recent advances in the design of inflatable lifting surfaces have removed previous deterrents to their use and multiple wing designs have been successfully flight tested on UAVs. Primary benefits of inflatable wings include stowability (deploy upon command) and robustness (highly resistant to damage). The inflatable planforms can be either full- or partial-span designs allowing a large design space and mission adaptability. The wings can be stowed when not in use and inflated prior to or during flight. Since inflatable designs have improved survivability over rigid wings, this has the prospect of increasing vehicle robustness and combat survivability. Damage resistance of inflatable wings is shown from results of laboratory and flight tests.
Technical Paper

Heat Transfer in Two-Dimensional Jet Impingement of a Dielectric Liquid on to a Flat Plate With Uniform Heat Flux

1992-10-01
921943
Experiments were performed to investigate the convective heat transfer from a two-dimensional slot jet of the dielectric liquid PAO to a smooth 15.2 mm by 9.5 mm film resistor surface. The effects of nozzle width, nozzle-to-plate distance, impinging velocity, and liquid properties have been examined. Heat transfer correlations and a discussion of relative parametric effects are provided.
Technical Paper

Switched Reluctance Starter/Generator System Modeling Results

1995-05-01
951407
System modeling and simulation results for an experimental switched reluctance external integral starter/generator (EISG) are reported. The EISG system employs a single switched reluctance machine and a generating system architecture that produces two separate 270 Vdc buses from that single switched reluctance machine. The machine has six phases with three of the phases connected to one converter supplying 125 kW to one 270 Vdc bus while the other three phases are connected to a second converter supplying 125 kW to the other 270 Vdc bus. Each bus has its own EMI filter and control in addition to its own converter. Two separate system models have been developed for the EISG. One of these models has been denoted the averaged model and the other has been denoted the detailed model. Both models include the switched reluctance machine and power electronics, the EMI filter, and the feedback control. The development of both of these models is described.
Technical Paper

Biosensing on the CD Microfluidic Platform with Genetically Engineered Proteins

2000-07-10
2000-01-2513
The current Si/polymeric medical diagnostic sensors that are on the market only feature a one-point calibration system [1]. Such a measurement results in less accurate sensing and more in-factory sensor rejection. The two-point calibration fluidic method introduced here will alleviate some of the shortcomings of such current miniature analytical systems. Our fluidic platform is a disposable, multi-purpose micro analytical laboratory on a compact disc (CD) [2, 3]. This system is based on the centrifugal force, in which fluidic flow can be controlled by the spinning rate of the CD and thus a whole range of fluidic functions including valving, mixing, metering, splitting, and separation can be implemented. Furthermore, optical detection such as absorption and fluorescence can be incorporated into the CD control unit to obtain signals from pre-specified positions on the disc.
X