Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Journal Article

Simulation of Enclosures Including Attached Duct Work

2013-05-13
2013-01-1958
Partial enclosures are commonly utilized to reduce the radiated noise from equipment. Often, enclosure openings are fitted with silencers or louvers to further reduce the noise emitted. In the past, the boundary element method (BEM) has been applied to predict the insertion loss of the airborne path with good agreement with measurement. However, an alteration at the opening requires a new model and additional computational time. In this paper, a transfer function method is proposed to reduce the time required to assess the effect of modifications to an enclosure. The proposed method requires that the impedance at openings be known. Additionally, transfer functions relating the sound pressure at one opening to the volume velocity at other openings must be measured or determined using simulation. It is assumed that openings are much smaller than an acoustic wavelength. The sound power from each opening is determined from the specific acoustic impedance and sound pressure at the opening.
Technical Paper

Measurement of Sound Power Due to Flow Noise at the Outlet of a Straight Pipe

2021-08-31
2021-01-1050
Intake, exhaust, and heating / air conditioning systems in automobiles consist of various common duct elements. Noise arises primarily due to the source and is attenuated using common elements like expansion chambers and resonators. This attenuation is straightforward to predict using plane wave simulation and more advanced numerical methods. However, flow noise is often an unexpected important noise source. Predictions require computer intensive analyses. To better understand the aeroacoustic sources in duct systems, a flow rig has been developed at the University of Kentucky. The flow rig consists of a blower, a silencer to attenuate blower noise, external noise sources, and then the test duct. The flow rig can be equipped with an anechoic termination to measure transmission loss or may be used to measure insertion loss directly. In the latter case, the sound power is measured from the pipe outlet inside of a hemi-anechoic chamber.
Journal Article

A Parametric Investigation of Louvered Terminations for Rectangular Ducts

2015-06-15
2015-01-2356
The insertion loss of louvered terminations positioned at the end of a rectangular duct is determined using acoustic finite element analysis. Insertion loss was determined by taking the difference between the sound power with and without the louvers at the termination. Analyses were conducted in the plane wave regime and the acoustic source was anechoic eliminating any reflections from the source. The effect of different louver configurations on insertion loss was examined. Parameters investigated included louver length, angle, and spacing between louvers. Based on the analyses, equations were developed for the insertion loss of unlined louvers.
Technical Paper

Source Identification Using an Inverse Visible Element Rayleigh Integral Approach

2007-05-15
2007-01-2180
This paper documents an inverse visible element Rayleigh integral (VERI) approach. The VERI is a fast though approximate method for predicting sound radiation that can be used in the place of the boundary element method. This paper extends the method by applying it to the inverse problem where the VERI is used to generate the acoustic transfer matrix relating the velocity on the surface to measurement points. Given measured pressures, the inverse VERI can be used to reconstruct the vibration of a radiating surface. Results from an engine cover and diesel engine indicate that the method can be used to reliably quantify the sound power and also approximate directivity.
Technical Paper

Crash Rates of Younger Drivers

2001-10-01
2001-01-3348
Over the past decade crash rates of younger drivers have been increasing despite a decrease in their driver population. This study examined specific driving maneuvers whose unsuccessful undertaking results in specific types of crashes involving these drivers. Four types of crashes were identified including crashes at intersections, rear end, crashes resulting from passing maneuvers and single vehicle crashes. For all crashes a general trend of decreasing involvement with increasing age was observed indicating that inexperience is the largest single contributor to the increased crash rates of younger drivers. Increasing the level of awareness among young drivers about these issues and their likely crash involvement seems to be the only viable approach.
Technical Paper

A Review of Current Techniques for Measuring Muffler Transmission Loss

2003-05-05
2003-01-1653
The most common approach for measuring the transmission loss of a muffler is to determine the incident power by decomposition theory and the transmitted power by the plane wave approximation assuming an anechoic termination. Unfortunately, it is difficult to construct a fully anechoic termination. Thus, two alternative measurement approaches are considered, which do not require an anechoic termination: the two load method and the two-source method. Both methods are demonstrated on two muffler types: (1) a simple expansion chamber and (2) a double expansion chamber with an internal connecting tube. For both cases, the measured transmission losses were compared to those obtained from the boundary element method. The measured transmission losses compared well for both cases demonstrating that transmission losses can be determined reliably without an anechoic termination. It should be noted that the two-load method is the easier to employ for measuring transmission loss.
Technical Paper

Reducing the Uncertainty of Sound Absorption Measurements Using the Impedance Tube Method

2013-05-13
2013-01-1965
The measurement of sound absorption coefficient (SAC) of porous materials is covered by both American and international standards. However, by using the standards alone it is difficult to achieve consistently repeatable results given the large number of variables such as sample cutting and preparation, sample fit and position in the tube, and sample material variability. This paper will review the standards briefly and examine what is available in the literature to guide users in making consistently repeatable SAC measurements. The paper will also show some of the authors' results and interpret these results in light of the standards and technical literature on the subject.
Technical Paper

Weed Recognition Using Machine Vision and Color Texture Analysis

1996-08-01
961759
The environmental impact from herbicide utilization has been well documented in recent years. The reduction in weed control with out a viable alternative will likely result in decreased per acre production and thus higher unit production cost. The potential for selective herbicide application to reduce herbicide usage and yet maintain adequate weed control has generated significant interest in different forms of remote sensing of agricultural crops. This research evaluated the color co-occurrence texture analysis technique to determine its potential for utilization in crop groundcover identification. A program termed GCVIS (Ground Cover VISion) was developed to control an ATT TARGA 24 frame grabber; and generate HSI color features from the RGB format pixel data, HSI CCM matrices and the co-occurrence texture feature data.
Technical Paper

Interior Noise Prediction Process for Heavy Equipment Cabs

1997-05-20
971955
This paper is concerned with the prediction and experimental verification of the interior noise of cabs used on construction, highway, and farm equipment. The typical heavy equipment cab is totally enclosed and partially lined with absorbing materials but is much stiffer and more massive than automobile passenger compartments. The process to analyze a construction cab is explained in detail. Selected results are also presented to show the value of the method.
Technical Paper

Use of Finite Element Simulation for Modeling Vertically Aligned Carbon Nanotube Arrays Based on Structural Mechanics Principles

2013-04-08
2013-01-0645
Carbon nanomaterials such as vertically aligned carbon nanotubes arrays are emerging new materials that have demonstrated superior mechanical, thermal, and electrical properties. The carbon nanomaterials have the huge potential for a wide range of vehicular applications, including lightweight and multifunctional composites, high-efficiency batteries and ultracapacitors, durable thermal coatings, etc. In order to design the carbon nanomaterials for various applications, it is very important to develop effective computational methods to model such materials and structures. The present work presents a structural mechanics approach to effectively model the mechanical behavior of vertically aligned carbon nanotube arrays. The carbon nanotube may be viewed as a geometrical space frame structure with primary bonds between any two neighboring atoms and thus can be modeled using three-dimensional beam elements.
Technical Paper

Exhaust Muffler Design and Analysis Using a Boundary Element Method Based Computer Program

1999-05-17
1999-01-1661
Typical automotive muffler designs contain complex internal components such as extended inlet/outlet tubes, thin baffles with eccentric holes, internal connecting tubes, perforated tubes, perforated baffles, flow plugs and sound-absorbing materials. An accurate performance prediction for highly complicated muffler designs would greatly reduce the effort in fabricating and testing of multiple design iterations for engineers. This paper discusses the use of a component-based computer simulation tool for design and analysis of exhaust mufflers. A comprehensive computer program based on the Direct Mixed-Body Boundary Element Method was developed to predict the transmission loss characteristics of muffler systems. The transmission loss is calculated by an improved four-pole method that does not require solving the boundary element matrix twice at each frequency, and hence, it is a significantly faster approach when compared to the conventional four-pole method.
Technical Paper

Anisotropic Material Behavior of 3D Printed Fiber Composites

2024-04-09
2024-01-2573
Literature has shown that 3D printed composites may have highly anisotropic mechanical properties due to variation in microstructure as a result of filament deposition process. Laminate composite theory, which is already used for composite products, has been proposed as an effective method for quantifying these mechanical characteristics. Continuous fiber composites traditionally have the best mechanical properties but can difficult or costly to manufacture, especially when attempting to use additive manufacturing methods. Traditionally, continuous fiber composites used specialized equipment such as vacuum enclaves or labor heavy hand layering techniques. An attractive alternative to these costly techniques is modifying discontinuous fiber additive manufacturing methods into utilizing continuous fibers. Currently there exist commercial systems that utilize finite-deposition (FD) techniques that insert a continuous fiber braid into certain layers of the composite product.
X