Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Design and Preliminary Test Results from a Second Generation Power-Assisted Space Suit Glove Joint

1998-07-13
981674
Near to long term goals in the nation's space program would benefit from a significant reduction of the fatigue associated with manual tasks performed by suited astronauts, and the corresponding increase in the comfort, safety, and productivity of EVA operations this would enable. To this end, the University of Maryland Space Systems Laboratory and ILC Dover Inc. have developed an electromechanical, power-assisted EVA glove which has demonstrated the ability to substantially reduce manual fatigue while simultaneously increasing range of motion. The lessons learned from the construction and testing of this initial prototype have been used to guide a second generation design for this power-assist concept, which achieves comparable or superior performance with significantly less hardware and power consumption. This paper describes the new, second generation power-assist mechanism, reviewing the relevant design issues and comparing its performance with the initial design.
Technical Paper

Determining Optimum Redesign Plans for Avionics Based on Electronic Part Obsolescence Forecasts

2002-11-05
2002-01-3012
Many electronic parts have life cycles that are shorter than the life cycle of the product they are in. Life cycle mismatches caused by the obsolescence of electronic parts can result in significantly sustainment costs for long life systems. In particular, avionics often encounters part obsolescence problems before being fielded and nearly always experience part obsolescence problems during their field life. This paper presents a methodology for determining the optimum design refresh (redesign) schedule for long field life electronic systems based on forecasted electronic part obsolescence and a mix of obsolescence mitigation approaches ranging from lifetime buys to part substitution.
Technical Paper

Morphing Upper Torso: A Novel Concept in EVA Suit Design

2006-07-17
2006-01-2142
The University of Maryland Space Systems Laboratory and ILC Dover LP have developed a novel concept: a soft pressure garment that can be dynamically reconfigured to tailor its shape properties to the wearer and the desired task set. This underlying concept has been applied to the upper torso of a rear entry suit, in which the helmet ring, waist ring and two shoulder rings make up a system of four interconnected parallel manipulators with tensile links. This configuration allows the dynamic control of both the position and orientation of each of the four rings, enabling modification of critical sizing dimensions such as the inter-scye distance, as well as task-specific orientations such as helmet, scye and waist bearing angles. Half-scale and full-scale experimental models as well as an analytical inverse kinematics model were used to examine the interconnectedness of the plates, the role of external forces generated by pressurized fabric, and the controllability of the system.
Technical Paper

Interface Design Issues of the Ranger Telerobotics Flight Experiment

1995-07-01
951522
While robotics have been employed in many environments, their use in space has been limited by high development costs and reliability issues. Using new management strategies and reduced mission life, the University of Maryland and NASA are developing the Ranger Telerobotic Flight Experiment (TFX), scheduled for flight in early 1997. This mission poses unique requirements on the design and implementation of the ground control station and it's interfaces. Two of the most important design issues are the need for high bandwidth command data, and cost constraints on the operator interface. This paper is intended to briefly outline the Ranger TFX mission, related theory on human perception, capabilities the control station must supply to vehicle designers sot that they can design effective control station interfaces, results from a preliminary study, and suggestions for future research.
Technical Paper

Human and Robotic Enabling Performance System Development and Testing

2005-07-11
2005-01-2969
With a renewed focus on manned exploration, NASA is beginning to prepare for the challenges that lie ahead. Future manned missions will require a symbiosis of human and robotic infrastructure. As a step towards understanding the roles of humans and robots in future planetary exploration, NASA headquarters funded ILC Dover and the University of Maryland to perform research in the area of human and robotic interfaces. The research focused on development and testing of communication components, robotic command and control interfaces, electronic displays, EVA navigation software and hardware, and EVA lighting. The funded research was a 12-month effort culminating in a field test with NASA personnel.
Technical Paper

Development and Initial Testing of a Space Suit Simulator for Neutral Buoyancy

1999-07-12
1999-01-1968
The Maryland Advanced Research/Simulation (MARS) Suit is designed to be a low-cost test bed for extravehicular activity (EVA) research, providing an environment for the development and application of biomedical sensors and advanced EVA technologies. It is also designed to be used in gaining more experience with human-telerobotic interactions in an integrated EVA worksite. This paper details the first generation MARS Suit (MX-1) design, describes the low-cost development process, and presents results from ongoing suit testing, as well as plans for future work.
X