Refine Your Search

Topic

Author

Search Results

Journal Article

Development and Validation of an Analytical Seal Bead Design Model for Automotive Superplastic Forming

2010-04-12
2010-01-0979
With the increasing demand for fuel efficient vehicles, technologies like superplastic forming (SPF) are being developed and implemented to allow for the utilization of lightweight automotive sheet materials. While forming under superplastic conditions leads to increased formability in lightweight alloys, such as aluminum, the slower forming times required by the technology can limit the technology to low to mid production levels. One problem that can increase forming time is the reduction of forming pressure due to pressurizing (forming) gas leaks, during the forming cycle, at the die/sheet/blankholder interface. Traditionally, such leaks have been successfully addressed through the use of a seal bead. However, for advanced die technologies that result in reduced cycle times (such as hot draw mechanical performing, which combine aspects of mechanical preforming of the sheet metal followed by SPF), the use of seal beads can restrict the drawing of sheet material into the forming die.
Journal Article

Modeling of Failure Modes of Gas Metal Arc Welds in Notched Lap-Shear Specimens of HSLA Steel

2014-04-01
2014-01-0784
The failure modes of gas metal arc welds in notched lap-shear specimens of high strength low alloy (HSLA) steel are investigated. Notched lap-shear specimens of gas metal arc welds were first made. Quasi-static test results of the notched lap-shear specimens showed two failure locations for the welds. The specimens cut from coupons with shorter weld lengths failed near the weld root whereas the specimens cut from coupons with longer weld lengths failed near the weld toe. Micro-hardness tests were conducted in order to provide an assessment of the mechanical properties of the base metal, the heat affected zone, and the weld metal. In order to understand the failure modes of these welds, finite element models were developed with the geometric characteristics of the weld metals and heat affected zones designed to match those of the micrographs of the cross sections for the long and short welds.
Journal Article

Hybrid Finite Element Analysis of a Rotorcraft

2013-05-13
2013-01-1995
The Hybrid FEA method is based on combining conventional Finite Element Analysis (FEA) with Energy Finite Element Analysis (EFEA) for mid-frequency computations. The difficulty in using conventional FEA at higher frequencies originates from requiring a very large number of elements in order to capture the flexible wavelength of the panel members which are present in a structure. In the Hybrid FEA the conventional FEA model is modified by de-activating the bending behavior of the flexible panels in the FEA computations and introducing instead a large number of dynamic impedance elements for representing the omitted bending behavior. The excitation is considered to be applied on the conventional FEA model and the vibration analysis is conducted. The power flow through the dynamic impedance elements is computed and applied as excitation to the EFEA model of the flexible panels. The EFEA analysis computes the vibration of the flexible panels.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Journal Article

Effects of Non-Associated Flow on Residual Stress Distributions in Crankshaft Sections Modeled as Pressure-Sensitive Materials under Fillet Rolling

2015-04-14
2015-01-0602
In this paper, the evolution equation for the active yield surface during the unloading/reloading process based on the pressure-sensitive Drucker-Prager yield function and a recently developed anisotropic hardening rule with a non-associated flow rule is first presented. A user material subroutine based on the anisotropic hardening rule and the constitutive relation was written and implemented into the commercial finite element program ABAQUS. A two-dimensional plane strain finite element analysis of a crankshaft section under fillet rolling was conducted. After the release of the roller, the magnitude of the compressive residual hoop stress for the material with consideration of pressure sensitivity typically for cast irons is smaller than that without consideration of pressure sensitivity. In addition, the magnitude of the compressive residual hoop stress for the pressure-sensitive material with the non-associated flow rule is smaller than that with the associated flow rule.
Journal Article

Stress Intensity Factor Solutions for Gas Metal Arc Welds in Lap-Shear Specimens

2015-04-14
2015-01-0708
In this paper, mode I and mode II stress intensity factor solutions for gas metal arc welds in single lap-shear specimens are investigated by the analytical stress intensity factor solutions and by finite element analyses. Finite element analyses were carried out in order to obtain the computational stress intensity factor solutions for both realistic and idealized weld geometries. The computational results indicate that the stress intensity factor solutions for the realistic welds are lower than the analytical solutions for the idealized weld geometry. The computational results can be used for the estimation of fatigue lives in a fatigue crack growth model under mixed mode loading conditions for gas metal arc welds.
Journal Article

Stress Intensity Factor Solutions for Dissimilar Welds in Lap-Shear Specimens of Steel, Magnesium, Aluminum and Copper Sheets

2015-04-14
2015-01-1754
In this paper, the analytical stress intensity factor and J integral solutions for welds in lap-shear specimens of two dissimilar sheets based on the beam bending theory are first reviewed. The solutions are then presented in the normalized forms. Next, two-dimensional finite element analyses were selectively conducted to validate the analytical solutions based on the beam bending theory. The interface crack parameters, the stress intensity factor solutions, and the J integral solutions for welds in lap-shear specimens of different combinations of steel, aluminum, and magnesium, and the combination of aluminum and copper sheets of different thickness ratios are then presented for convenient fracture and fatigue analyses. The transition thickness ratios for critical crack locations for different combinations of dissimilar materials are then determined from the analytical solutions.
Journal Article

Powerpack Optimal Design Methodology with Embedded Configuration Benchmarking

2016-04-05
2016-01-0313
Design of military vehicle needs to meet often conflicting requirements such as high mobility, excellent fuel efficiency and survivability, with acceptable cost. In order to reduce the development cost, time and associated risk, as many of the design questions as possible need to be addressed with advanced simulation tools. This paper describes a methodology to design a fuel efficient powerpack unit for a series hybrid electric military vehicle, with emphasis on the e-machine design. The proposed methodology builds on previously published Finite element based analysis to capture basic design features of the generator with three variables, and couples it with a model reduction technique to rapidly re-design the generator with desired fidelity. The generator is mated to an off the shelf engine to form a powerpack, which is subsequently evaluated over a representative military drive cycles.
Journal Article

A Reduced-Order Model for Evaluating the Dynamic Response of Multilayer Plates to Impulsive Loads

2016-04-05
2016-01-0307
Assessing the dynamic performance of multilayer plates subjected to impulsive loading is of interest for identifying configurations that either absorb energy or transmit the energy in the transverse directions, thereby mitigating the through-thickness energy propagation. A reduced-order modeling approach is presented in this paper for rapidly evaluating the structural dynamic performance of various multilayer plate designs. The new approach is based on the reverberation matrix method (RMM) with the theory of generalized rays for fast analysis of the structural dynamic characteristics of multilayer plates. In the RMM model, the waves radiated from the dynamic load are reflected and refracted at each interface between layers, and the waves within each layer are transmitted with a phase lag. These two phenomena are represented by the global scattering matrix and the global phase matrix, respectively.
Journal Article

Residual Stress Distributions in Rectangular Bars Due to High Rolling Loads

2016-04-05
2016-01-0424
In this paper, residual stress distributions in rectangular bars due to rolling or burnishing at very high rolling or burnishing loads are investigated by roll burnishing experiments and three-dimensional finite element analyses using ABAQUS. First, roll burnishing experiments on rectangular bars at two roller burnishing loads are presented. The results indicate the higher burnishing load induces lower residual stresses and the higher burnishing load does not improve fatigue lives. Next, in the corresponding finite element analyses, the roller is modeled as rigid and the roller rolls on the flat surface of the bar with a low coefficient of friction. The bar material is modeled as an elastic-plastic strain hardening material with a nonlinear kinematic hardening rule for loading and unloading.
Journal Article

Stress Intensity Factor Solutions for Welds in Lap-Shear Specimens under Clamped Loading Conditions

2016-04-05
2016-01-0504
Analytical stress intensity factor solutions for welds in lap-shear specimens of equal thickness under pinned and clamped loading conditions based on the beam bending theory are presented and examined. Finite element analyses are also employed to obtain the stress intensity factor solutions for welds in lap-shear specimens under both clamped and pinned loading conditions. The computational solutions are compared well with the analytical solutions. The results of the analytical and computational solutions indicate that the bending moments at the clamped edges reduce the mode I and II stress intensity factor solutions by about 7% to 10% for the given specimen geometry. The effects of the clamped grips depend on the ratio of the weld width to the specimen length. Comparisons of the stress intensity factor solutions suggest that the fatigue lives of the welds in lap-shear specimens under clamped loading conditions should be higher than those under pinned loading conditions.
Journal Article

Fatigue Life Assessment of Welded Structures with the Linear Traction Stress Analysis Approach

2012-04-16
2012-01-0524
Structural stress methods are now widely used in fatigue life assessment of welded structures and structures with stress concentrations. The structural stress concept is based on the assumption of a global stress distribution at critical locations such as weld toes or weld throats, and there are several variants of structural stress approaches available. In this paper, the linear traction stress approach, a nodal force based structural stress approach, is reviewed first. The linear traction stress approach offers a robust procedure for extracting linear traction stress components by post-processing the finite element analysis results at any given hypothetical crack location of interest. Pertinent concepts such as mesh-insensitivity, master S-N curve, fatigue crack initiation and growth mechanisms are also discussed.
Technical Paper

Innovative Additive Manufacturing Process for Successful Production of 7000 Series Aluminum Alloy Components Using Smart Optical Monitoring System

2020-04-14
2020-01-1300
Aircraft components are commonly produced with 7000 series aluminum alloys (AA) due to its weight, strength, and fatigue properties. Auto Industry is also choosing more and more aluminum component for weight reduction. Current additive manufacturing (AM) methods fall short of successfully producing 7000 series AA due to the reflective nature of the material along with elements with low vaporization temperature. Moreover, lacking in ideal thermal control, print inherently defective products with such issues as poor surface finish alloying element loss and porosity. All these defects contribute to reduction of mechanical strength. By monitoring plasma with spectroscopic sensors, multiple information such as line intensity, standard deviation, plasma temperature or electron density, and by using different signal processing algorithm, AM defects have been detected and classified.
Journal Article

Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

2011-05-17
2011-01-1734
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations.
Technical Paper

Validation of an EFEA Formulation for Computing the Vibrational Response of Complex Structures

2007-05-15
2007-01-2324
This paper presents a validation case study for an Energy Finite Element Analysis (EFEA) formulation through comparison to test data. The EFEA comprises a simulation tool for computing the structural response of a complex structure and the amount of the radiated power. The EFEA formulation presented in this paper can account for periodic stiffeners, for partial fluid loading effects on the outer part of the structure, and for internal compartments filled with heavy fluid. In order to validate these modeling capabilities of the EFEA two 1/8th scale structures representing an advanced double hull design and a conventional hull design of a surface ship are analyzed. Results for the structural vibration induced on the outer bottom part of the structure are compared to available test data. The excitation is applied at two different locations of the deck structure. Good correlation is observed between the numerical results and the test data.
Technical Paper

Bolt-Load Retention Behavior of Die-Cast AZ91D and AE42 Magnesium

1998-02-23
980090
The effect of temperature and preload on the bolt load retention (BLR) behavior of AZ91D and AE42 magnesium die castings was investigated. The results were compared to those of 380 aluminum die castings. Test temperatures from 125 to 175°C and preloads from 7 to 28 kN were investigated. The loss of preload for AZ91D was more sensitive to temperature than that observed for AE42, especially at low preloads. In general, retained bolt-load was lowest in AZ91D. All test assemblies were preloaded at room temperature and load levels increased when the assemblies reached test temperature. The load-increase was dependent on the preload level, test temperature, alloy, and results from thermal expansion mismatch between the steel bolt and the magnesium alloy components, mitigated by the onset of primary creep. Thermal exposure (aging) of AZ91D at 150°C improved BLR behavior.
Technical Paper

A Substructuring Formulation for the Energy Finite Element Analysis

2007-05-15
2007-01-2325
In applications of the Energy Finite Element Analysis (EFEA) there is an increasing need for developing comprehensive models with a large number of elements which include both structural and interior fluid elements, while certain parts of the structure are considered to be exposed to an external fluid loading. In order to accommodate efficient computations when using simulation models with a large number of elements, joints, and domains, a substructuring computational capability has been developed. The new algorithm is based on dividing the EFEA model into substructures with internal and interface degrees of freedom. The system of equations for each substructure is assembled and solved separately and the information is condensed to the interface degrees of freedom. The condensed systems of equations from each substructure are assembled in a reduced global system of equations. Once the global system of equations has been solved the solution for each substructure is pursued.
Technical Paper

Combining an Energy Boundary Element with an Energy Finite Element Analysis for Airborne Noise Simulations

2007-05-15
2007-01-2178
The Energy Boundary Element Analysis (EBEA) has been utilized in the past for computing the exterior acoustic field at high frequencies (above ∼400Hz) around vehicle structures and numerical results have been compared successfully to test data [1, 2 and 3]. The Energy Finite Element Analysis (EFEA) has been developed for computing the structural vibration of complex structures at high frequencies and validations have been presented in previous publications [4, 5]. In this paper the EBEA is utilized for computing the acoustic field around a vehicle structure due to external acoustic noise sources. The computed exterior acoustic field comprises the excitation for the EFEA analysis. Appropriate loading functions have been developed for representing the exterior acoustic loading in the EFEA simulations, and a formulation has been developed for considering the acoustic treatment applied on the interior side of structural panels.
Technical Paper

Permanent Mold Casting and Creep Behavior of Mg - 4 Al - 4 X: (Ca, Ce, La, Sr) Alloys

2007-04-16
2007-01-1027
Creep-resistant magnesium alloys for automotive powertrain applications offer significant potential for vehicle weight reduction. In this study permanent mold casting, microstructure and creep behavior have been investigated for a series of ternary magnesium alloys (Mg-4Al-4X (X: Ca, Ce, La, Sr) wt%) and AXJ530 (Mg-5Al-3Ca-0.15Sr, wt%). A permanent mold was instrumented with twelve thermocouples and mold temperature was monitored during the casting process. Average mold temperature increased from 200°C to 400°C during a typical alloy casting series (fifteen to twenty castings). The cast microstructure for all alloys consists of primary α-Mg globular phase surrounded by eutectic structure which is composed of intermetallic(s) and α-Mg magnesium phases. The primary cell size of the AXJ530 increased from 18 to 24 μm with increasing mold temperature and a similar trend is expected for all alloys.
Technical Paper

The Mg-Al-Ca Alloy System for Structural Applications at Elevated Temperatures

2007-04-16
2007-01-1025
Solidification paths and phase stability have been investigated in the creep resistant Mg-Al-Ca based alloys for powertrain applications. The liquidus projection and isothermal sections of the Mg-Al-Ca ternary system were determined, including a ternary (Mg, Al)2Ca intermetallic compound. The solidification of the alloys in the α-Mg primary phase field involves L→α+(Mg, Al)2Ca eutectic reaction in a wide range of compositions and is terminated with invariant reactions that form Mg2Ca or Mg17Al12 phases. The (Mg, Al)2Ca is a high temperature phase and decomposes into Mg2Ca and Al2Ca phases between 773 and 673 K, but the transformation is kinetically quite slow at temperatures below 473 K. Based on this new knowledge, alloy modifications through quaternary elemental additions to improve the solid-solution strength and aging treatments to reinforce the α-Mg phase with precipitates have been demonstrated.
X