Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Impact of CO2 Dilution on Ignition Delay Times of Full Blend Gasolines in a Rapid Compression Machine

2021-09-21
2021-01-1199
Autoignition delay times of two full blend gasoline fuels (high and low RON) were explored in a rapid compression machine. CO2 dilution by mass was introduced at 0%, 15%, and 30% levels with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy is used to represent exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines by using CO2 as a surrogate for major EGR constituents(N2, CO2, H2O). Experiments were conducted over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. The full blend fuels were admitted directly into the combustion chamber for mixture preparation using the direct test chamber (DTC) approach. CO2 addition retarded the autoignition times for the fuels studied here. The retarding effect of the CO2 dilution was more pronounced in the NTC region when compared to the lower and higher temperature range.
Technical Paper

Accelerometer-Based Estimation of Combustion Features for Engine Feedback Control of Compression-Ignition Direct-Injection Engines

2020-04-14
2020-01-1147
An experimental investigation of non-intrusive combustion sensing was performed using a tri-axial accelerometer mounted to the engine block of a small-bore high-speed 4-cylinder compression-ignition direct-injection (CIDI) engine. This study investigates potential techniques to extract combustion features from accelerometer signals to be used for cycle-to-cycle engine control. Selection of accelerometer location and vibration axis were performed by analyzing vibration signals for three different locations along the block for all three of the accelerometer axes. A magnitude squared coherence (MSC) statistical analysis was used to select the best location and axis. Based on previous work from the literature, the vibration signal filtering was optimized, and the filtered vibration signals were analyzed. It was found that the vibration signals correlate well with the second derivative of pressure during the initial stages of combustion.
Technical Paper

A Case Study on Reducing the Fuel Pulse Noise from Gasoline Engine Injectors

2020-04-14
2020-01-1276
There are many noise sources from the vehicle fuel system to generate noise inside a vehicle. Among them, the pressure pulsation due to the rapid opening and closing of gasoline engine injectors can cause undesirable fuel pulse noise. As the pressure pulsation propagates in the fuel supply line toward to rear end of the vehicle, the pressure energy is transferred from fuel lines to the vehicle underbody through clips and into the passenger compartment. It is crucial to attenuate the pressure pulsation inside the fuel line to reduce the fuel pulse noise. In this paper, a case study on developing an effective countermeasure to reduce the objectionable fuel pulse noise of a V8 gasoline injection system at engine idle condition is presented. First, the interior noise of a prototype vehicle was tested and the objectionable fuel pulse noise is exhibited. The problem frequency ranges of the pulse noise were identified.
Journal Article

Comparison of Computational Simulation of Automotive Spinning Wheel Flow Field with Full Width Moving Belt Wind Tunnel Results

2015-04-14
2015-01-1556
One of the remaining challenges in the simulation of the aerodynamics of ground vehicles is the modeling of the airflows around the spinning tires and wheels of the vehicle. As in most advances in the development of simulation capabilities, it is the lack of appropriately detailed and accurate experimental data with which to correlate that holds back the advance of the technology. The flow around the wheels and tires and their interfaces with the vehicle body and the ground is a critical area for the development of automobiles and trucks, not just for aerodynamic forces and moments, and their result on fuel economy and vehicle handling and performance, but also for the airflows and pressures that affect brake cooling, engine cooling airflows, water spray management etc.
Journal Article

A Case Study on Clean Side Duct Radiated Shell Noise Prediction

2017-03-28
2017-01-0444
Engine air induction shell noise is a structure borne noise that radiates from the surface of the air induction system. The noise is driven by pulsating engine induction air and is perceived as annoying by vehicle passengers. The problem is aggravated by the vehicle design demands for low weight components packaged in an increasingly tight under hood environment. Shell noise problems are often not discovered until production intent parts are available and tested on the vehicle. Part changes are often necessary which threatens program timing. Shell noise should be analyzed in the air induction system design phase and a good shell noise analytical process and targets must be defined. Several air induction clean side ducts are selected for this study. The ducts shell noise is assessed in terms of material strength and structural stiffness. A measurement process is developed to evaluate shell noise of the air induction components. Noise levels are measured inside of the clean side ducts.
Journal Article

Optical Engine Operation to Attain Piston Temperatures Representative of Metal Engine Conditions

2017-03-28
2017-01-0619
Piston temperature plays a major role in determining details of fuel spray vaporization, fuel film deposition and the resulting combustion in direct-injection engines. Due to different heat transfer properties that occur in optical and all-metal engines, it becomes an inevitable requirement to verify the piston temperatures in both engine configurations before carrying out optical engine studies. A novel Spot Infrared-based Temperature (SIR-T) technique was developed to measure the piston window temperature in an optical engine. Chromium spots of 200 nm thickness were vacuum-arc deposited at different locations on a sapphire window. An infrared (IR) camera was used to record the intensity of radiation emitted by the deposited spots. From a set of calibration experiments, a relation was established between the IR camera measurements of these spots and the surface temperature measured by a thermocouple.
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

2017-03-28
2017-01-0723
This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Technical Paper

Sensitivity Analysis of Aerodynamic Drag Coefficient to EPA Coastdown Ambient Condition Variation

2020-04-14
2020-01-0666
The test cycle average drag coefficient is examined for the variation of allowable EPA coastdown ambient conditions. Coastdown tests are ideally performed with zero wind and at SAE standard conditions. However, often there is some variability in actual ambient weather conditions during testing, and the range of acceptable conditions is further examined in detail as it pertains to the effect on aerodynamic drag derived from the coastdown data. In order to “box” the conditions acceptable during a coastdown test, a sensitivity analysis was performed for wind averaged drag (CD¯) as well as test cycle averaged drag coefficients (CDWC) for the fuel economy test cycles. Test cycle average drag for average wind speeds up to 16 km/h and temperatures ranging from 5C to 35C, along with variation of barometric pressure and relative humidity are calculated. The significant effect of ambient cross winds on coastdown determined drag coefficient is demonstrated.
Technical Paper

Minimization of Electric Heating of the Traction Induction Machine Rotor

2020-04-14
2020-01-0562
The article solves the problem of reducing electric power losses of the traction induction machine rotor to prevent its overheating in nominal and high-load modes. Electric losses of the rotor power are optimized by the stabilization of the main magnetic flow of the electric machine at a nominal level with the amplitude-frequency control in a wide range of speeds and increased loads. The quasi-independent excitation of the induction machine allows us to increase the rigidity of mechanical characteristics, decrease the rotor slip at nominal loads and overloads and significantly decrease electrical losses in the rotor as compared to other control methods. The article considers the technology of converting the power of individual phases into a single energy flow using a three-phase electric machine equivalent circuit and obtaining an energy model in the form of equations of instantaneous active and reactive power balance.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Journal Article

Fatigue Life Assessment of Welded Structures with the Linear Traction Stress Analysis Approach

2012-04-16
2012-01-0524
Structural stress methods are now widely used in fatigue life assessment of welded structures and structures with stress concentrations. The structural stress concept is based on the assumption of a global stress distribution at critical locations such as weld toes or weld throats, and there are several variants of structural stress approaches available. In this paper, the linear traction stress approach, a nodal force based structural stress approach, is reviewed first. The linear traction stress approach offers a robust procedure for extracting linear traction stress components by post-processing the finite element analysis results at any given hypothetical crack location of interest. Pertinent concepts such as mesh-insensitivity, master S-N curve, fatigue crack initiation and growth mechanisms are also discussed.
Journal Article

Practical Implementation of the Two-Measurement Correction Method in Automotive Wind Tunnels

2015-04-14
2015-01-1530
In recent years, there has been renewed attention focused on open jet correction methods, in particular on the two-measurement method of E. Mercker, K. Cooper, and co-workers. This method accounts for blockage and static pressure gradient effects in automotive wind tunnels and has been shown by both computations and experiments to appropriately adjust drag coefficients towards an on-road condition, thus allowing results from different wind tunnels to be compared on a more equitable basis. However, most wind tunnels have yet to adopt the method as standard practice due to difficulties in practical application. In particular, it is necessary to measure the aerodynamic forces on every vehicle configuration in two different static pressure gradients to capture that portion of the correction. Building on earlier proof-of-concept work, this paper demonstrates a practical method for implementing the two-measurement procedure and demonstrates how it can be used for production testing.
Journal Article

In-Cylinder Particulate Matter and Spray Imaging of Ethanol/Gasoline Blends in a Direct Injection Spark Ignition Engine

2013-04-08
2013-01-0259
A single-cylinder Direct Injection Spark Ignition (DISI) engine with optical access was used to investigate the effects of ethanol/gasoline blends on in-cylinder formation of particulate matter (PM) and fuel spray characteristics. Indolene was used as a baseline fuel and two blends of 50% and 85% ethanol (by volume, balance indolene) were investigated. Time resolved thermal radiation (incandescence/natural luminosity) of soot particles and fuel spray characteristics were recorded using a high speed camera. The images were analyzed to quantify soot formation in units of relative image intensity as a function of important engine operating conditions, including ethanol concentration in the fuel, fuel injection timing (250, 300 and 320° bTDC), and coolant temperature (25°C and 90°C). Spatially-integrated incandescence was used as a metric to quantify the level of in-cylinder PM formed at the different operating conditions.
Journal Article

Highly Turbocharged Gasoline Engine and Rapid Compression Machine Studies of Super-Knock

2016-04-05
2016-01-0686
Super-knock has been a significant obstacle for the development of highly turbocharged (downsized) gasoline engines with spark ignition, due to the catastrophic damage super-knock can cause to the engine. According to previous research by the authors, one combustion process leading to super-knock may be described as hot-spot induced pre-ignition followed by deflagration which can induce detonation from another hot spot followed by high pressure oscillation. The sources of the hot spots which lead to pre-ignition (including oil films, deposits, gas-dynamics, etc.) may occur sporadically, which leads to super-knock occurring randomly at practical engine operating conditions. In this study, a spark plasma was used to induce preignition and the correlation between super-knock combustion and the thermodynamic state of the reactant mixture was investigated in a four-cylinder production gasoline engine.
Technical Paper

Multi-Dimensional Modeling of Natural Gas Ignition Under Compression Ignition Conditions Using Detailed Chemistry

1998-02-23
980136
A detailed chemical kinetic mechanism, consisting of 22 species and 104 elementary reactions, has been used in conjunction with the multi-dimensional reactive flow code KIVA-3 to study autoignition of natural gas injected under compression ignition conditions. Calculations for three different blends of natural gas are performed on a three-dimensional computational grid by modeling both the injection and ignition processes. Ignition delay predictions at pressures and temperatures typical of top-dead-center conditions in compression ignition engines compare well with the measurements of Naber et al. [1] in a combustion bomb. Two different criteria, based on pressure rise and mass of fuel burned, are used to detect the onset of ignition. Parametric studies are conducted to show the effect of additives like ethane and hydrogen peroxide in increasing the fuel consumption rate.
Technical Paper

Simultaneous Reduction of NOX and Soot in a Heavy-Duty Diesel Engine by Instantaneous Mixing of Fuel and Water

2007-04-16
2007-01-0125
Meeting diesel engine emission standards for heavy-duty vehicles can be achieved by simultaneous injection of fuel and water. An injection system for instantaneous mixing of fuel and water in the combustion chamber has been developed by injecting water in a mixing passage located in the periphery of the fuel spray. The fuel spray is then entrained by water and hot air before it burns. The experimental work was carried out on a Rapid Compression Machine and on a Komatsu direct-injection heavy-duty diesel engine with a high pressure common rail fuel injection system. It was also supported by Computational Fluid Dynamics simulations of the injection and combustion processes in order to evaluate the effect of water vapor distribution on cylinder temperature and NOX formation. It has been concluded that when the water injection is appropriately timed, the combustion speed is slower and the cylinder temperature lower than in conventional diesel combustion.
Technical Paper

Analysis of Temperatures and Stresses in Wet Friction Disks Involving Thermally Induced Changes of Contact Pressure

1998-09-14
982035
Thermal distortions of friction disks caused by frictional heating modify pressure distribution on friction surfaces. Pressure distribution, in turn, determines distribution of generated frictional heat. These interdependencies create a complex thermoelastic system that, under some conditions, may become unstable and may lead to severe pressure concentrations with very high local temperature and stress. The phenomenon is responsible for many common thermal failure modes of friction elements and is known as frictionally excited thermoelastic instability (TEI). In the paper, one of the cases of TEI is investigated theoretically and experimentally. The study involves a two-disk structure with one fiction disk and one matching steel disk that have one friction interface. An unsteady heat conduction problem and an elastic contact problem are modeled as axisymmetric ones and are solved using the finite element method.
Technical Paper

An Experimental Investigation of Transient Heat Losses to Tank Wall During the Inflator Tank Test

1998-09-29
982326
A series of inflator tank tests was carried out to determine the amount of transient heat losses to the tank wall during these tests. The time history data of tank wall temperature, and tank interior gas temperature and pressure, were measured. The tank wall temperature data were analyzed using an inverse heat conduction method to generate the transient heat loss fluxes from the tank gas to the tank wall. The validity of the results are discussed along with the physical reasoning and experimental observations. This is the first part of an effort in a research project to develop a comprehensive heat transfer model to predict the transient heat losses to the tank wall during the inflator tank test.
X