Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Influence of HCCI and SACI Combustion Modes on NH3 Generation and Subsequent Storage across a TWC-SCR System

2016-04-05
2016-01-0951
Advanced engine combustion strategies, such as HCCI and SACI, allow engines to achieve high levels of thermal efficiency with low levels of engine-out NOx emissions. To maximize gains in fuel efficiency, HCCI combustion is often run at lean operating conditions. However, lean engine operation prevents the conventional TWC after-treatment system from reaching legislated tailpipe emissions due to oxygen saturation. One potential solution for handling this challenge without the addition of costly NOx traps or on-board systems for urea injection is the passive TWC-SCR concept. This concept includes the integration of an SCR catalyst downstream of a TWC and the use of periods of rich or stoichiometric operation to generate NH3 over the TWC to be stored on the SCR catalyst until it is needed for NOx reduction during subsequent lean operation.
Technical Paper

Extending the Dilution Limit of Spark Ignition Combustion via Fuel Injection during Negative Valve Overlap

2016-04-05
2016-01-0671
Using exhaust gas recirculation (EGR) as a diluent instead of air allows the use of a conventional three-way catalyst for effective emissions reduction. Cooled EGR can also reduce fuel consumption and NOx emissions, but too much cool EGR leads to combustion instability and misfire. Negative valve overlap (NVO) is explored in the current work as an alternative method of dilution in which early exhaust valve closing causes combustion products to be retained in the cylinder and recompressed near top dead center, before being mixed with fresh charge during the intake stroke. The potential for fuel injection during NVO to extend the dilution limit of spark ignition combustion is evaluated in this work using experiments conducted on a 4-cylinder 2.0 L gasoline direct injection engine with variable intake and exhaust valve timing. The results demonstrate fuel injection during NVO can extend the dilution limit, improve brake specific fuel consumption (BSFC), and reduce CO and NOx emissions.
Technical Paper

A Global Model for Steady State and Transient S.I. Engine Heat Transfer Studies

1996-02-01
960073
A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The success of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper.
Technical Paper

Effect of Exhaust Valve Timing on Gasoline Engine Performance and Hydrocarbon Emissions

2004-10-25
2004-01-3058
Despite remarkable progress made over the past 30 years, automobiles continue to be a major source of hydrocarbon emissions. The objective of this study is to evaluate whether variable exhaust valve opening (EVO) and exhaust valve closing (EVC) can be used to reduce hydrocarbon emissions. An automotive gasoline engine was tested with different EVO and EVC timings under steady-state and start-up conditions. The first strategy that was evaluated uses early EVO with standard EVC. Although exhaust gas temperature is increased and catalyst light-off time is reduced, the rapid drop in cylinder temperature increases cylinder-out hydrocarbons to such a degree that a net increase in hydrocarbon emissions results. The second strategy that was evaluated uses early EVO with early EVC. Early EVO reduces catalyst light-off time by increasing exhaust gas temperature and early EVC keeps the hydrocarbon-rich exhaust gas from the piston crevice from leaving the cylinder.
X