Refine Your Search

Topic

Search Results

Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Technical Paper

Lower Extremity Injuries in Frontal Crashes: Injuries, Locations, AIS and Contacts

1991-02-01
910811
Frontal crashes (11-1 o'clock) were reviewed from the National Accident Severity Study file (NASS) for years 1980-87. Adult drivers and front right passengers, with lower extremity injuries of the pelvis, thigh, knee, leg or ankle/foot were reviewed. Analysis of age differences, injury contacts, and effectiveness of the 3-point restraint system were studied. Unrestrained drivers have a higher frequency of knee injuries than passengers, fewer leg injuries than passengers and both have the same frequency of ankle/foot injuries. Older unbelted drivers have more injuries to the pelvis, leg, and ankle/foot region than do young drivers. Passengers have more leg injuries. The instrument panel is the major contact for most of the lower extremity injuries. Lap/shoulder belts significantly reduce lower extremity injury frequency.
Technical Paper

Modeling Vehicle Ingress and Egress Using the Human Motion Simulation Framework

2008-06-17
2008-01-1896
The ease of getting into and out of passenger cars and light trucks is a critical component of customer acceptance and product differentiation. In commercial vehicles, the health and safety of drivers is affected by the design of the steps and handholds they use to get into and out of the cab. Ingress/egress assessment appears to represent a substantial application opportunity for digital human models. The complexity of the design space and the range of possible biomechanical and subjective measures of interest mean that developing useful empirical models is difficult, requiring large-scale subject testing with physical mockups. Yet, ingress and egress motions are complex and strongly affected by the geometric constraints and driver attributes, posing substantial challenges in creating meaningful simulations using figure models.
Technical Paper

A Centrifuge Concept for Measuring the Rollover Threshold of Light-Duty Vehicles

2002-05-07
2002-01-1603
Various means for measuring a vehicle's roll stability performance are considered in terms of the pertinence of their test conditions to the rollover crash record, the practicality and quality of the measurement, and their ability to span the performance range of the population of light-duty vehicles. Classical static measures as well as the so-called “maneuver-type” tests that have been under extensive study by the U.S. Dept. of Transportation are specifically addressed. In light of limitations facing the existing methods, the concept of a centrifuge test device is introduced and discussed. The apparatus is comprised of a relatively large machine that mounts a full-sized vehicle tangent to the rotation of a radial arm which revolves at a controlled angular rate. The minimum steady speed of rotation that induces a rollover response in the mounted vehicle corresponds to the static rollover threshold, in units of lateral (or centripetal) acceleration.
Technical Paper

Car Crashes and Non-Head Impact Cervical Spine Injuries in Infants and Children

1992-02-01
920562
The effects of child safety seats have been well documented in the medical literature. Scattered throughout the medical literature are individual case reports of cervical injury to children restrained in child restraint systems. A review of the literature is provided identifying previous documented cases. The authors also provide new case details of children with cervical spine injury without head contact. An overview of the growth of the infant and specific details in the cervical spine that may contribute to significant cervical injury without head impact is presented.
Technical Paper

Non-Head Impact Cervical Spine Injuries in Frontal Car Crashes to Lap-Shoulder Belted Occupants

1992-02-01
920560
Crash injury reduction via lap-shoulder belt use has been well documented. As any interior car component, lap-shoulder belts may be related to injury in certain crashes. Relatively unknown is the fact that cervical fractures or fracture-dislocations to restrained front seat occupants where, in the crash, no head contact was evidenced by both medical records and car inspection. An extensive review of the available world's literature on car crash injuries revealed more than 100 such cases. A review of the NASS 80-88 was also conducted, revealing more examples. Cases from the author's own files are also detailed.
Technical Paper

Simple Predictors of the Performance of A-trains

1993-11-01
932995
Figures of merit describing the performance qualities of multiple-trailer vehicle combinations (for example, rearward amplification) are usually determined from either full-scale vehicle testing or computer simulation analysis. Either method is expensive and time consuming, and restricted in practice to organizations with specialized equipment and engineering skills. One goal of a recent study, conducted by the University of Michigan Transportation Research Institute and sponsored by the Federal Highway Administration, was to use basic vehicle properties to develop simple formulations for estimating the performance qualities of multiple-trailer vehicle combinations. Several hundred computer simulation runs were made using UMTRI's Yaw/Roll program. Five common double-trailer vehicle configurations (defined by trailer lengths and axle configurations) were studied. Each of the five vehicles was subject to fifteen parameter variations.
Technical Paper

Repeatability of the Tilt-Table Test Method

1993-03-01
930832
Tilt-table testing is one means of quantifying the static roll stability of highway vehicles. By this technique, a test vehicle is subjected to a physical situation analogous to that experienced in a steady state turn. Although the analogy is not perfect, the simplicity and fidelity of the method make it an attractive means for estimating static rollover threshold. The NHTSA has suggested the tilt-table method as one means of regulating the roll stability properties of light trucks and utility vehicles. One consideration in evaluating the suitability of any test method for regulatory use is repeatability, both within and among testing facilities. As a first step toward evaluating the repeatability of the tilt-table method, an experimental study examining the sensitivity of tilt-table test results to variables associated with methodology and facility was conducted by UMTRI for the Motor Vehicle Manufacturers Association. This paper reports some of the findings of that study.
Technical Paper

Knee, Thigh and Hip Injury Patterns for Drivers and Right Front Passengers in Frontal Impacts

2003-03-03
2003-01-0164
Late model passenger cars and light trucks incorporate occupant protection systems with airbags and knee restraints. Knee restraints have been designed principally to meet the unbelted portions of FMVSS 208 that require femur load limits of 10-kN to be met in barrier crashes up to 30 mph, +/- 30 degrees utilizing the 50% male Anthropomorphic Test Device (ATD). In addition, knee restraints provide additional lower-torso restraint for belt-restrained occupants in higher-severity crashes. An analysis of frontal crashes in the University of Michigan Crash Injury Research and Engineering Network (UM CIREN) database was performed to determine the influence of vehicle, crash and occupant parameters on knee, thigh, and hip injuries. The data sample consists of drivers and right front passengers involved in frontal crashes who sustained significant injuries (Abbreviated Injury Scale [AIS] ≥ 3 or two or more AIS ≥ 2) to any body region.
Technical Paper

A Simulation Graphical User Interface for Vehicle Dynamics Models

1995-02-01
950169
This paper describes the architecture and use of a simulation graphical user interface (SGUI) that uses new (1990's) computer hardware and software concepts to provide an easy-to-use environment for simulating vehicle dynamics. The user interacts with windows, buttons, and pop-up menus, in a multitasking environment such as UNIX, Windows®, or Mac OS®. The SGUI reduces the level of computer expertise required of the user. Most information is shown in a graphic context, and “what if?” options are selected by clicking buttons and selecting from pop-up menus. The SGUI is organized as a data base of vehicles, vehicle parts, vehicle inputs, and simulation results. The organization makes it easy for users to assemble the component data needed to (1) simulate new systems, (2) run simulation programs automatically, and (3) view the results graphically. The SGUI is assembled from low-cost software components.
Technical Paper

Some Effects of Lumbar Support Contour on Driver Seated Posture

1995-02-01
950141
An appropriately contoured lumbar support is widely regarded as an essential component of a comfortable auto seat. A frequently stated objective for a lumbar support is to maintain the sitter's lumbar spine in a slightly extended, or lordotic, posture. Although sitters have been observed to sit with substantial lordosis in some short-duration testing, long-term postural interaction with a lumbar support has not been documented quantitatively in the automotive environment. A laboratory study was conducted to investigate driver posture with three seatback contours. Subjects† from four anthropometric groups operated an interactive laboratory driving simulator for one-hour trials. Posture data were collected by means of a sonic digitizing system. The data identify driver-selected postures over time for three lumbar support contours. An increase of 25 mm in the lumbar support prominence from a flat contour did not substantially change lumbar spine posture.
Technical Paper

Practical Aspects of Prototyping Instrument Clusters

1996-02-01
960532
This paper describes an ongoing effort to develop computer-simulated instrumentation for the UMTRI Driver Interface Research Simulator. The speedometer, tachometer, engine and fuel gauges, along with warning lights are back projected onto a screen in front of the driver. The image is generated by a Macintosh running LabVIEW. Simulated instrumentation (instead of a production cluster) was provided so that new display designs can be rapidly generated and tested. This paper addresses the requirements for prototyping software, the advantages and disadvantages of the packages available, and the UMTRI implementation of the software, and its incorporation into the driving simulator.
Technical Paper

A Method for Documenting Locations of Rib Fractures for Occupants in Real-World Crashes Using Medical Computed Tomography (CT) Scans

2006-04-03
2006-01-0250
A method has been developed to identify and document the locations of rib fractures from two-dimensional CT images obtained from occupants of crashes investigated in the Crash Injury Research Engineering Network (CIREN). The location of each rib fracture includes the vertical location by rib number (1 through 12), the lateral location by side of the thorax (inboard and outboard), and the circumferential location by five 36-degree segments relative to the sternum and spine. The latter include anterior, anterior-lateral, lateral, posterior-lateral, and posterior regions. 3D reconstructed images of the whole ribcage created from the 2D CT images using Voxar software are used to help identify fractures and their rib number. A geometric method for consistently locating each fracture circumferentially is described.
Technical Paper

Side Impacts to the Passenger Compartment — Clinical Studies from Field Accident Investigations

1989-02-01
890379
The side impact, recently and currently the subject to of much debate, controversy and proposed NHTSA rule making, is a difficult type of crash to significantly reduce serious injuries and fatalites. Results from real-world crash investigations presents a confusing picture for the near-side passenger compartment crash. A direct relationship between the amount of crush and injury severity levels (MAIS) is not apparent. Exemplar cases of tow-a-way/injury crashes are presented at all AIS injury level of drivers in crashes with direct driver door crush damage.
Technical Paper

Directional Dynamics Considerations for Multi-Articulated, Multi-Axled Heavy Vehicles

1989-11-01
892499
Directional performance characteristics of heavy truck combinations are reviewed with respect to the influences of multiple axles and articulation points. The performance characteristics considered include steady turning, directional stability, and forced responses in obstacle avoidance maneuvers. The review provides useful insights to engineers interested in the handling and safety qualities of these types of vehicles.
Technical Paper

Safety Implications of Trucks Designed to Weigh Over 80,000 Pounds

1989-08-01
891632
A method is presented for checking vehicle designs to see if they will meet size and weight rules that may be applicable to vehicles weighing more than 80,000 lb. Then, examples of heavy trucks that have been designed to be productive are used in illustrating analytical evaluations of measures of performance in safety-related maneuvering situations. The paper concludes with the point of view that trucks over 80,000 lb could have design attributes that would allow these heavier vehicles to have levels of intrinsic safety exceeding or comparable to those of current trucks.
Technical Paper

Anthropometry for WorldSID A World-Harmonized Midsize Male Side Impact Crash Dummy

2000-06-19
2000-01-2202
The WorldSID project is a global effort to design a new generation side impact crash test dummy under the direction of the International Organization for Standardization (ISO). The first WorldSID crash dummy will represent a world-harmonized mid-size adult male. This paper discusses the research and rationale undertaken to define the anthropometry of a world standard midsize male in the typical automotive seated posture. Various anthropometry databases are compared region by region and in terms of the key dimensions needed for crash dummy design. The Anthropometry for Motor Vehicle Occupants (AMVO) dataset, as established by the University of Michigan Transportation Research Institute (UMTRI), is selected as the basis for the WorldSID mid-size male, updated to include revisions to the pelvis bone location. The proposed mass of the dummy is 77.3kg with full arms. The rationale for the selected mass is discussed. The joint location and surface landmark database is appended to this paper.
Technical Paper

Methods for Laboratory Investigation of Truck and Bus Driver Postures

2000-12-04
2000-01-3405
Few studies have systematically examined the effects of truck and bus workstation geometry on driver posture and position. This paper presents methods for determining drivers' postural responses and preferred component locations using a reconfigurable vehicle mockup. Body landmark locations recorded using a three-dimensional digitizer are used to compute a skeletal-linkage representation of the drivers' posture. A sequential adjustment procedure is used to determine the preferred positions and orientations of key components, including the seat, steering wheel, and pedals. Data gathered using these methods will be used to create new design tools for trucks and buses, including models of driver-selected seat position, eye location, and needed component adjustment ranges. The results will also be used to create accurate posture-prediction models for use with human modeling software.
Technical Paper

Challenges in Frontal Crash Protection of Pregnant Drivers Based on Anthropometric Considerations

1999-03-01
1999-01-0711
Pregnant occupants pose a particular challenge to safety engineers because of their different anthropometry and the additional “occupant within the occupant.” A detailed study of the anthropometry and seated posture of twentytwo pregnant drivers over the course of their pregnancies was conducted. Subjects were tested in an adjustable seating buck that could be configured to different vehicle package geometries with varying belt anchorage locations. Each subject was tested four times over the course of her pregnancy to examine changes in seat positioning, seated anthropometry, and positioning of the lap and shoulder belts with gestational age. Data collected include preferred seating positions of pregnant drivers, proximity of the pregnant occupant to the steering wheel and airbag module, contours of the subjects’ torsos and abdomens relative to seat-belt centerline contours, and subject perceptions of their seated posture and proximity to vehicle components.
Technical Paper

Underride in Fatal Rear-End Truck Crashes

2000-12-04
2000-01-3521
For the 1997 data year, UMTRI's Center for National Truck Statistics collected data on rear underride as part of its Trucks Involved in Fatal Accidents (TIFA) survey. Data collected included whether the truck had a rear underride guard, whether the striking vehicle underrode the truck, and how much underride occurred. A primary goal was to evaluate rear underride of straight trucks. Overall, 453 medium and heavy trucks were struck in the rear by a nontruck vehicle in a fatal crash in 1997. Some underride occurred in at least 272 (60.0%) of the rear-end crashes. For straight trucks, there was some underride in 77 (52.0%) of the crashes, no underride occurred in 43 (29.1%) of the fatal rear-end crashes, and underride could not be determined in the remaining 28 (18.9%) straight truck rear-end crashes. Despite the fact that three-fourths of tractor combinations had an underride guard on the trailer, underride was more common for tractor combinations.
X