Refine Your Search

Topic

Author

Search Results

Journal Article

Measuring Diesel Ash Emissions and Estimating Lube Oil Consumption Using a High Temperature Oxidation Method

2009-06-15
2009-01-1843
Diesel engine ash emissions are composed of the non-combustible portions of diesel particulate matter derived mainly from lube oil, and over time can degrade diesel particulate filter performance. This paper presents results from a high temperature oxidation method (HTOM) used to estimate ash emissions, and engine oil consumption in real-time. Atomized lubrication oil and diesel engine exhaust were used to evaluate the HTOM performance. Atomized fresh and used lube oil experiments showed that the HTOM reached stable particle size distributions and concentrations at temperatures above 700°C. The HTOM produced very similar number and volume weighted particle size distributions for both types of lube oils. The particle number size distribution was unimodal, with a geometric mean diameter of about 23 nm. The volume size distribution had a geometric volume mean diameter of about 65 nm.
Journal Article

Investigation of Fuel Effects on In-Cylinder Reforming Chemistry Using Gas Chromatography

2016-04-05
2016-01-0753
Negative Valve Overlap (NVO) is a potential control strategy for enabling Low-Temperature Gasoline Combustion (LTGC) at low loads. While the thermal effects of NVO fueling on main combustion are well-understood, the chemical effects of NVO in-cylinder fuel reforming have not been extensively studied. The objective of this work is to examine the effects of fuel molecular structure on NVO fuel reforming using gas sampling and detailed speciation by gas chromatography. Engine gas samples were collected from a single-cylinder research engine at the end of the NVO period using a custom dump-valve apparatus. Six fuel components were studied at two injection timings: (1) iso-octane, (2) n-heptane, (3) ethanol, (4) 1-hexene, (5) cyclohexane, and (6) toluene. All fuel components were studied neat except for toluene - toluene was blended with 18.9% nheptane by liquid volume to increase the fuel reactivity.
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Journal Article

Emissions Effects of Hydrogen as a Supplemental Fuel with Diesel and Biodiesel

2008-04-14
2008-01-0648
A 1.9 liter Volkswagen TDI engine has been modified to accomodate the addition of hydrogen into the intake manifold via timed port fuel injection. Engine out particulate matter and the emissions of oxides of nitrogen were investigated. Two fuels,low sulfur diesel fuel (BP50) and soy methyl ester (SME) biodiesel (B99), were tested with supplemental hydrogen fueling. Three test conditions were selected to represent a range of engine operating modes. The tests were executed at 20, 40, and 60 % rated load with a constant engine speed o 1700 RPM. At each test condition the percentage of power from hydrogen energy was varied from 0 to 40 %. This corresponds to hydrogen flow rates ranging from 7 to 85 liters per minute. Particulate matter (PM) emissions were measured using a scaning mobility particle sizer (SMPS) and a two stage micro dilution system. Oxides of nitrogen were also monitored.
Technical Paper

Characterization of Exhaust Particulate Emissions from a Spark Ignition Engine

1998-02-23
980528
Exhaust particulate emissions from a 4-cylinder, 2.25 liter spark ignition engine were measured and characterized. A single-stage ejector-diluter system was used to dilute and cool the exhaust sample for measurement. The particulate measurement equipment included a condensation nucleus counter and a scanning mobility particle sizer. Exhaust measurements were made both upstream and downstream of the catalytic converter using three different fuels. Unlike particulate emissions in diesel engines, spark ignition exhaust particle emissions were found to be highly unstable. Typically, a stable “baseline” concentration on the order of 105 particles/cm3 is emitted. Occasionally, however, a “spike” in the exhaust particle concentration is observed. The exhaust particle concentrations observed during these spikes can increase by as much as two orders of magnitude over the baseline concentration.
Technical Paper

Diesel Exhaust Particle Size: Measurement Issues and Trends

1998-02-23
980525
Exhaust particle number concentrations and size distributions were measured from the exhaust of a 1995 direct injection, Diesel engine. Number concentrations ranged from 1 to 7.5×107 particles/cm3. The number size distributions were bimodal and log-normal in form with a nuclei mode in the 7-15 nm diameter range and an accumulation mode in the 30-40 nm range. For nearly all operating conditions, more than 50% of the particle number, but less than 1% of the particle mass were found in the nuclei mode. Preliminary indications are that the nuclei mode particles are solid and formed from volatilization and subsequent nucleation of metallic ash from lubricating oil additives. Modern low emission engines produce low concentrations of soot agglomerates. The absence of these agglomerates to act as sites for adsorption or condensation of volatile materials makes nucleation and high number emissions more likely.
Technical Paper

Comparing Measurements of Carbon in Diesel Exhaust Aerosols Using the Aethalometer, NIOSH Method 5040, and SMPS

2007-04-16
2007-01-0334
Combustion aerosols consist mainly of elemental and organic carbon (EC and OC). Since EC strongly absorbs light and thus affects atmospheric visibility and radiation balance, there is great interest in its measurement. To this end, the National Institute for Occupational Safety and Health (NIOSH) published a standard method to determine the mass of EC and OC on filter samples. Another common method of measuring carbon in aerosols is the aethalometer, which uses light extinction to measure “black carbon” or BC, which is considered to approximate EC. A third method sometimes used for estimating carbon in submicron combustion aerosols, is to measure particle size distributions using a scanning mobility particle sizer (SMPS) and calculate mass using the assumptions that the particles are spherical, carbonaceous and of known density.
Technical Paper

Significance of Fuel Sulfur Content and Dilution Conditions on Particle Emissions from a Heavily-Used Diesel Engine During Transient Operation

2007-04-16
2007-01-0319
The effects of fuel sulfur content and dilution conditions on diesel engine PM number emissions have been researched extensively through steady state testing. Most results show that the concentration of nuclei-mode particles emitted increases with fuel sulfur content. A few studies further observed that fuel sulfur content has little effect on the emissions of heavily-used engines. It has also been found that primary dilution conditions can have a large impact on the size and number distribution of the nuclei-mode particles. These effects, however, have not yet been fully understood through transient testing, the method used by governments worldwide to certify engines and regulate emissions, and a means of experimentation which generates realistic conditions of on-road vehicles by varying the load and speed of the engine.
Technical Paper

Cooling and Thermal Control Strategies in the Space Suit for Routine and Emergency Situations

2008-06-29
2008-01-1993
A series of demonstration studies were conducted with the aim of better understanding how to regulate body heat and thus enhance thermal comfort of astronauts during EVA requiring intensive physical exertion. The first study evaluated body zone heat transfer under different cooling temperatures in a liquid cooling garment (LCG), confirming the effectiveness of areas with high density tissue. The second study evaluated different configurations of hoods and neck scarves to maximize heat extraction from these key areas for heat release. The third study explored the possibility of regulating body heat by control of the water temperature circulating through selected body zones in the LCG, or blocking heat dissipation from particular body areas. The potential of heat insertion/removal from the head, hands, and feet to stabilize body comfort was evaluated in terms of the ability to advance this heat current “highway” from the core.
Technical Paper

Diesel Trap Performance: Particle Size Measurements and Trends

1998-10-19
982599
Particle concentrations and size distributions were measured in the exhaust of a turbocharged, aftercooled, direct-injection, Diesel engine equipped with a ceramic filter (trap). Measurements were performed both upstream and downstream of the filter using a two-stage, variable residence time, micro-dilution system, a condensation particle counter and a scanning mobility particle sizer set up to count and size particles in the 7-320 nm diameter range. Engine operating conditions of the ISO 11 Mode test were used. The engine out (upstream of filter) size distribution has a bimodal, log normal structure, consisting of a nuclei mode with a geometric number mean diameter, DGN, in the 10-30 nm range and an accumulation mode with DGN in the 50-80 nm range. The modal structure of the size distribution is less distinct downstream of the filter. Nearly all the particle number emissions come from the nuclei mode, are nanoparticles (Dp < 50nm), and are volatile.
Technical Paper

Particle and Gaseous Emission Characteristics of a Formula SAE Race Car Engine

2009-04-20
2009-01-1400
The focus of this work was the physical characterization of exhaust aerosol from the University of Minnesota Formula SAE team's engine. This was done using two competition fuels, 100 octane race fuel and E85. Three engine conditions were evaluated: 6000 RPM 75% throttle, 8000 RPM 50% throttle, and 8000 RPM 100% throttle. Dilute emissions were characterized using a Scanning Mobility Particle Sizer (SMPS) and a Condensation Particle Counter (CPC). E85 fuel produced more power and had lower particulate matter emissions at all test conditions, but more fuel was consumed.
Technical Paper

The Influence of Engine Lubricating Oil on Diesel Nanoparticle Emissions and Kinetics of Oxidation

2003-10-27
2003-01-3179
Earlier work [1] shows that kinetics of Diesel soot oxidation is different from that of ethylene diffusion flame soot oxidation [2], possibly due to metals from lube oil. This study investigates the influence of metals on soot oxidation and the exhaust particle emissions using lube oil dosed fuel (2 % by volume). This method does not simulate normal lube oil consumption, but is used as a means of adding metals to particles for oxidation studies. This study also provides insight into the effect of systems that mix lube oil with fuel to minimize oil change service. The HTO-TDMA (High Temperature Oxidation-Tandem Differential Mobility Analyzer) technique [1] was used to measure the surface specific oxidation rate of Diesel particles over the temperature range 500-750 °C. Diesel particles sampled from the exhaust stream of a Diesel engine were size segregated by differential mobility and oxidized in situ in air in a heated flow tube of known residence time and temperature profile.
Technical Paper

Towards Human Friendly Hydraulics - Passive Teleoperation of Hydraulic Equipment Using a Force Feedback Joystick

2002-03-19
2002-01-1492
Hydraulic systems, as power source and transmission, offer many advantages over electromechanical or purely mechanical counterparts in terms of power density, flexibility and portability. Many hydraulic systems require touching and contacting the physical environments; and many of these systems are directly controlled by human. If hydraulic systems are passive, they would be safer to interact with, and easier for human to control. In this paper, we describe our current research in developing bilateral passive teleoperated hydraulic machines which a human operator controls via a force feedback joystick. Two key developments are 1) methodologies to passify the electrohydraulic valves as a two-port device, and 2) the passive teleoperation controllers.
Technical Paper

An Advanced Physiological Based Shortened Liquid Cooling/Warming Garment for Comfort Management in Routine and Emergency EVA

2002-07-15
2002-01-2413
The focus of this research is on the development of a more energy efficient shortened liquid cooling/warming garment (LCWG) based on physiological principles comparing the efficacy of heat transfer of different body zones; the capability of blood to deliver heat; individual muscle and fat body composition as a basis for individual thermal profiles to customize the zonal involvement of the garment; and the development of shunts to minimize or redirect the cooling/warming loop for different environmental conditions, physical activity levels, and emergency situations. The total length of tubing in the LCWG is approximately 35% less, and the weight decreased by 45% compared to the LCVG currently used in space.
Technical Paper

Comfort Management in Rest and Exercise Conditions in an Innovative Shortened Liquid Cooling/Warming Garment

2002-07-15
2002-01-2411
Comfort management in extreme environments is complex, requiring temperature stabilization of the body core and distal parts of the extremities. Examination of the capability of body zones to absorb and release heat can facilitate a solution to this problem. Using an experimental shortened liquid cooling/warming garment (LCWG), heat transfer effectiveness of different body zone combinations was assessed in rest and exercise conditions, at different levels of body heat deficit and intensities of physical exertion. Comfort stabilization in terms of minimum changes in core (Tc) and finger (Tfing) temperatures was achieved in exercise (200-400 W) at 18-22°C inlet water temperature in the following zonal combination: a portion of the torso, the internal thigh area covering the femoral artery, the forearm, neck, and part of the head.
Technical Paper

Investigation of Species from Negative Valve Overlap Reforming Using a Stochastic Reactor Model

2017-03-28
2017-01-0529
Fuel reforming during a Negative Valve Overlap (NVO) period is an effective approach to control Low Temperature Gasoline Combustion (LTGC) ignition. Previous work has shown through experiments that primary reference fuels reform easily and produce several species that drastically affect ignition characteristics. However, our previous research has been unable to accurately predict measured reformate composition at the end of the NVO period using simple single-zone models. In this work, we use a stochastic reactor model (SRM) closed cycle engine simulation to predict reformate composition accounting for in-cylinder temperature and mixture stratification. The SRM model is less computationally intensive than CFD simulations while still allowing the use of large chemical mechanisms to predict intermediate species formation rates.
Technical Paper

Comparison and Optimization of Fourier Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectroscopy for Speciating Unburned Hydrocarbons from Diesel Low Temperature Combustion

2017-03-28
2017-01-0992
Partially premixed low temperature combustion (LTC) in diesel engines is a strategy for reducing soot and NOX formation, though it is accompanied by higher unburned hydrocarbon (UHC) emissions compared to conventional mixing-controlled diesel combustion. In this work, two independent methods of quantifying light UHC species from a diesel engine operating in early LTC (ELTC) modes were compared: Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). A sampling system was designed to capture and transfer exhaust samples for off-line GC-MS analysis, while the FT-IR sampled and quantified engine exhaust in real time. Three different ELTC modes with varying levels of exhaust gas recirculation (EGR) were implemented on a modern light-duty diesel engine. GC-MS and FT-IR concentrations were within 10 % for C2H2, C2H4, C2H6, and C2H4O. While C3H8 was identified and quantified by the FT-IR, it was not detected by the GCMS.
Technical Paper

Exploration of Dual Fuel Diesel Engine Operation with On-Board Fuel Reforming

2017-03-28
2017-01-0757
Many dual fuel technologies have been proposed for diesel engines. Implementing dual fuel modes can lead to emissions reductions or increased efficiency through using partially premixed combustion and fuel reactivity control. All dual fuel systems have the practical disadvantage that a secondary fuel storage and delivery system must be included. Reforming the primary diesel to a less reactive vaporized fuel on-board has potential to overcome this key disadvantage. Most previous research regarding on-board fuel reforming has been focused on producing significant quantities of hydrogen. However, only partially reforming the primary fuel is sufficient to vaporize and create a less volatile fuel that can be fumigated into an engine intake. At lower conversion efficiency and higher equivalence ratio, reforming reactors retain higher percentage of the inlet fuel’s heating value thus allowing for greater overall engine system efficiency.
Technical Paper

Solid Particle Number and Mass Emissions from Lean and Stoichiometric Gasoline Direct Injection Engine Operation

2018-04-03
2018-01-0359
In this work, engine-out particle mass (PM) and particle number (PN) emissions were experimentally examined from a gasoline direct injection (GDI) engine operating in two lean combustion modes and one stoichiometric mode with a fuel of known properties. Ten steady state operating points, two constant speed load steps, and an engine cold start were examined. Results showed that solid particles emitted from the engine under steady state stoichiometric conditions had a uniquely broad size distribution that was relatively flat between the diameters of 10 and 100 nm. In most operating conditions, lean homogenous modes can achieve lower particle emissions than stoichiometric modes while improving engine thermal efficiency. Alternatively, lean stratified operating modes resulted in significantly higher PN and PM emissions than both lean homogeneous and stoichiometric modes with increased efficiency only at low engine load.
Technical Paper

Dynamic Modeling of Torque-Biasing Devices for Vehicle Yaw Control

2006-02-14
2006-01-1963
This paper focuses on modeling of torque-biasing devices of a four-wheel-drive system used for improving vehicle stability and handling performance. The proposed driveline system is based on nominal front-wheel-drive operation with on-demand transfer of torque to the rear. The torque biasing components of the system are an electronically controlled center coupler and a rear electronically controlled limited slip differential. Kinematic modeling of the torque biasing devices is introduced including stage transitions during the locking stage and the unlocking/slipping stage. Analytical proofs of how torque biasing could be used to influence vehicle yaw dynamics are also included in the paper. A yaw control methodology utilizing the biasing devices is proposed. Finally, co-simulation results with Matlab®/Simulink® and CarSim® show the effectiveness of the torque biasing system in achieving yaw stability control.
X