Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

On the Effects of Parallelization on the Flow Prediction around a Fastback DrivAer Model at Different Attitudes

2021-04-06
2021-01-0965
When Computational Fluid Dynamics (CFD) is used in the development of road vehicles for passenger and performance use, the fidelity and numerical accuracy of the simulation are paramount as manufacturers strive to optimize the vehicle down to the single aerodynamic count. While much research has been performed on how the choices of simulation model or grid size affects the simulation results, very little has been done to investigate how the spatial decomposition of the domain amongst different nodes of a high-performance computing unit (HPC) influences the results of the simulation. As simulations grow larger, more nodes are required to reduce the simulation time, however in most commercial software this introduces a new form of error due to the accumulation of round-off errors created in the intra-node communication schemes used during iterations.
Technical Paper

Scale-Resolved and Time-Averaged Simulations of the Flow over a NASCAR Cup Series Racecar

2023-04-11
2023-01-0735
In spite of growing popularity of scale resolved transient simulations, like the Detached Eddy Simulation (DES), among the mainstream automotive OEMs for the aerodynamic optimization of the production vehicles, Reynolds Averaged Navier-Stokes (RANS) simulations is still the most widely used Computational Fluid Dynamics (CFD) approach in motorsports. This is partially due to the usage-limitations imposed by the sanctioning bodies like, the FIA and NASCAR, restricting not only the hours of wind tunnel operation but also limiting the amount of CFD compute resource. This, coupled with speed requirements for aerodynamic development prevent the widespread use of scale-resolved modeling, such as Large Eddy Simulation (LES) or Detached Eddy Simulation (DES) methodologies that require an order of magnitude more computational resources.
Journal Article

Aerodynamics of Landing Maneuvering of an Unmanned Aerial Vehicle in Close Proximity to a Ground Vehicle

2023-04-11
2023-01-0118
Autonomous takeoff and landing maneuvers of an unmanned aerial vehicle (UAV) from/on a moving ground vehicle (GV) have been an area of active research for the past several years. For military missions requiring repeated flight operations of the UAV, precise landing ability is important for autonomous docking into a recharging station, since such stations are often mounted on a ground vehicle. The development of precise and efficient control algorithms for this autonomous maneuvering has two key challenges; one is related to flight aerodynamics and the other is related to a precise detection of the landing zone. The aerodynamic challenges include understanding the complex interaction of the flows over the UAV and GV, potential ground effects at the proximity of the landing surface, and the impact of the variations in the surrounding wind flow and ambient conditions.
Technical Paper

Tuning of Turbulence Model Closure Coefficients Using an Explainability Based Machine Learning Algorithm

2023-04-11
2023-01-0562
This article discusses an application of Machine Learning (ML) tools to improve the prediction accuracy of Computational Fluid Dynamics (CFD) for external aerodynamic workflows. The Reynolds Averaged Navier-Stokes (RANS) approach to CFD has proved to be one of the most popular simulation methodologies due to its quick turnaround times and acceptable level of accuracy for most applications. However, in many cases the accuracy for the RANS models can prove to be suboptimal that can be significantly improved with model closure coefficient tuning. During the original turbulence model creation, these closure coefficients were chosen by somewhat ad hoc methods using simple canonical flows that do not transfer well to flows involving more complex objects, like the automotive bodies used in this work.
X