Refine Your Search

Topic

Author

Search Results

Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
Journal Article

Discrete Flow Mapping - A Mesh Based Simulation Tool for Mid-to-High Frequency Vibro-Acoustic Excitation of Complex Automotive Structures

2014-06-30
2014-01-2079
Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task, especially in the mid to high frequency regime, even with the computational resources available today. Standard modelling tools for complex vehicle parts include finite and boundary element methods (FEM and BEM), as well as Multi-Body Simulations (MBS). These methods are, however, robust only in the low frequency regime. In particular, FEM is not scalable to higher frequencies due to the prohibitive increase in model size. We have recently developed a new method called Discrete Flow Mapping (DFM), which extends existing high frequency methods, such as Statistical Energy Analysis or the so-called Dynamical Energy Analysis (DEA), to work on meshed structures. It provides for the first time detailed spatial information about the vibrational energy of a whole built-up structure of arbitrary complexity in this frequency range.
Technical Paper

The Effect of Temperature on the Molecular Compositions of External and Internal Gasoline Direct Injection Deposits

2021-09-21
2021-01-1188
The increased severity and prevalence of insoluble deposits formed on fuel injectors in gasoline direct injection (GDI) engines precipitates negative environmental, economic and healthcare impacts. A necessary step in mitigating deposits is to unravel the molecular compositions of these complex layered materials. But very little molecular data has been acquired. Mass spectrometry shows promise but most techniques require the use of solvents, making them unsuited for analyzing insoluble deposits. Here, we apply the high mass-resolving power and in-situ analysis capabilities of 3D OrbitrapTM secondary ion mass spectrometry (3D OrbiSIMS) to characterize deposits formed on the external tip and internal needle from a GDI injector. This is the first application of the technique to study internal GDI deposits. Polycyclic aromatic hydrocarbons (PAHs) are present up to higher maximum masses in the external deposit.
Technical Paper

Investigations of Diesel Injector Deposits Characterization and Testing

2020-09-15
2020-01-2094
Over the last decade, there has been an impetus in the automobile industry to develop new diesel injector systems, driven by a desire to reduce fuel consumption and proscribed by the requirement to fulfil legislation emissions. The modern common-rail diesel injector system has been developed by the industry to fulfil these aspirations, designed with ever-higher tolerances and pressures, which have led to concomitant increases in fuel temperatures after compression with reports of fuel temperatures of ~150°C at 1500-2500 bar. This engineering solution in combination with the introduction of Ultra Low Sulphur diesel fuel (ULSD) has been found to be highly sensitive to deposit formation both external injector deposits (EDID) and internal (IDID). The deposits have caused concerns for customers with poor spray patterns misfiring injector malfunction and failure, producing increased fuel consumption and emissions.
Journal Article

The Effect of Reducing Compression Ratio on the Work Output and Heat Release Characteristics of a DI Diesel under Cold Start Conditions

2008-04-14
2008-01-1306
An experimental investigation has been carried out to compare the indicated performance and heat release characteristics of a DI diesel engine at compression ratios of 18.4:1 and 15.4:1. The compression ratio was changed by modifying the piston bowl volume; the bore and stroke were unchanged, and the swept volume was nominally 500cc. The engine is a single cylinder variant of modern design which meets Euro 4 emissions requirements. Work output and heat release characteristics for the two compression ratios have been compared at an engine speed of 300 rev/min and test temperatures of 10, -10 and -20°C. A more limited comparison has also been made for higher speeds representative of cold idle at one test temperature (-20°C). The reduction in compression ratio generally produces an increase in peak specific indicated work output at low speeds; this is attributable to a reduction in blowby and heat transfer losses and lower peak rates of heat release increasing cumulative burn.
Journal Article

The Influence of Injection Strategy and Glow Plug Temperature on Cycle by Cycle Stability Under Cold Idling Conditions for a Low Compression Ratio, HPCR Diesel Engine

2012-04-16
2012-01-1071
Experimental studies have been undertaken on a single-cylinder HPCR diesel engine with a compression ratio of 15.5:1 to explore the effect of fuel injection strategy on cycle by cycle stability. The influence of the number, separation and quantity of pilot injections on the coefficient of variation of IMEP has been investigated at -20°C, 1000 rev/min, post-start idling conditions. Injection strategy and glow plug temperature trade-off has also been investigated at a range of soak temperatures. Up to four pilot injections have been used. For timing of the main injection near to the optimum, CoVIMEP values of 10% or better can be achieved. Closer spacing of injections improved stability and extended the range of timings to meet target stability. The best combinations of pilot number and pilot quantity varied with total fuel delivered.
Journal Article

Investigating the Potential to Reduce Crankshaft Main Bearing Friction During Engine Warm-up by Raising Oil Feed Temperature

2012-04-16
2012-01-1216
Reducing friction in crankshaft bearings during cold engine operation by heating the oil supply to the main gallery has been investigated through experimental investigations and computational modelling. The experimental work was undertaken on a 2.4l DI diesel engine set up with an external heat source to supply hot oil to the gallery. The aim was to raise the film temperature in the main bearings early in the warm up, producing a reduction in oil viscosity and through this, a reduction in friction losses. The effectiveness of this approach depends on the management of heat losses from the oil. Heat transfer along the oil pathway to the bearings, and within the bearings to the journals and shells, reduces the benefit of the upstream heating.
Journal Article

A Novel Technique for Investigating the Characteristics and History of Deposits Formed Within High Pressure Fuel Injection Equipment

2012-09-10
2012-01-1685
The recent developments in diesel fuel injection equipment coupled with the moves in the US to using ULSD and biodiesel blends has seen an increase in the number of reports from both engine manufacturers and fleet operators regarding fuel system deposit formation issues. These deposits not only form on and within the fuel injectors but they also form elsewhere in the fuel system, due to fuel recirculation. These will eventually accumulate in the fuel filters. Historically, diesel fuel system deposits have been attributed to contamination of the fuel or the degradation of the fuel with age. Such age related degradation has been attributed to oxidation of the fuel via well documented pathways, although the initiation of this process is still poorly understood. Papers at recent SAE meetings in Florence, San Antonio, Rio de Janeiro, San Diego and Kyoto have addressed many of these causes.
Technical Paper

Constraints on Fuel Injection and EGR Strategies for Diesel PCCI-Type Combustion

2008-04-14
2008-01-1327
An experimental study has been carried out to explore what limits fuel injection and EGR strategies when trying to run a PCCI-type mode of combustion on an engine with current generation hardware. The engine is a turbocharged V6 DI diesel with (1600 bar) HPCR fuel injection equipment and a cooled external EGR system. The variables examined have been the split and timings of fuel injections and the level of EGR; the responses investigated have been ignition delay, heat release, combustion noise, engine-out emissions and brake specific fuel consumption. Although PCCI-type combustion strategies can be effective in reducing NOx and soot emissions, it proved difficult to achieve this without either a high noise or a fuel economy penalty.
Technical Paper

DISI Engine Spark and Fuel Injection Timings. Effects, Compromise and Robustness

2001-09-24
2001-01-3672
DISI engine emissions and fuel economy are strongly dependent upon fuel injection and spark timings, particularly when the engine is operating in stratified charge mode. Experimental studies of the effects of injection and spark timings and the interaction between these are described. The sensitivity of HC and NOx emissions to timings during stratified charge operation, the comparison of performance under stratified and homogeneous charge modes of operation and the rationale for mode switch point settings are investigated. The high sensitivity of emissions to injection and spark timing settings gives rise to potential robustness issues. These are described.
Technical Paper

Characterisation of DISI Emissions and Fuel Economy in Homogeneous and Stratified Charge Modes of Operation

2001-09-24
2001-01-3671
An experimental study of the performance of a reverse tumble, DISI engine is reported. Specific fuel consumption and engine-out emissions have been investigated for both homogeneous and stratified modes of fuel injection. Trends in performance with varying AFR, EGR, spark and injection timings have been explored. It is shown that neural networks can be trained to describe these trends accurately for even the most complex case of stratified charge operation with exhaust gas recirculation.
Technical Paper

Comparison of Methods for Modelling Mid-to-High Frequency Vibro-Acoustic Energy Distributions in a Vehicle Floor Structure

2016-06-15
2016-01-1853
Car floor structures typically contain a number of smaller-scale features which make them challenging for vibro-acoustic modelling beyond the low frequency regime. The floor structure considered here consists of a thin shell floor panel connected to a number of rails through spot welds leading to an interesting multi-scale modelling problem. Structures of this type are arguably best modelled using hybrid methods, where a Statistical Energy Analysis (SEA) description of the larger thin shell regions is combined with a finite element model (FEM) for the stiffer rails. In this way the modal peaks from the stiff regions are included in the overall prediction, which a pure SEA treatment would not capture. However, in the SEA regions, spot welds, geometrically dependent features and directivity of the wave field are all omitted. In this work we present an SEA/FEM hybrid model of a car floor and discuss an alternative model for the SEA subsystem using Discrete Flow Mapping (DFM).
Technical Paper

Evaluating Performance of Uncoated GPF in Real World Driving Using Experimental Results and CFD modelling

2017-09-04
2017-24-0128
Environmental authorities such as EPA, VCA have enforced stringent emissions legislation governing air pollutants released into the atmosphere. Of particular interest is the challenge introduced by the limit on particulate number (PN) counting (#/km) and real driving emissions (RDE) testing; with new emissions legislation being shortly introduced for the gasoline direct injection (GDI) engines, gasoline particulate filters (GPF) are considered the most immediate solution. While engine calibration and testing over the Worldwide harmonized Light vehicles Test Cycle (WLTC) allow for the limits to be met, real driving emission and cold start constitute a real challenge. The present work focuses on an experimental durability study on road under real world driving conditions. Two sets of experiments were carried out. The first study analyzed a gasoline particulate filter (GPF) (2.4 liter, diameter 5.2” round) installed in the underfloor (UF) position and driven up to 200k km.
Technical Paper

Diesel Injector Deposits - An Issue That Has Evolved with Engine Technology

2011-08-30
2011-01-1923
Diesel engines have traditionally been favoured in heavy-duty applications for their fuel economy, robustness, reliability and relative lack of fuel sensitivity. Recently it has seen a growth in its popularity in light duty applications due particularly to its fuel efficiency. However, as the engine technology and particularly the fuel injection equipment has evolved to meet ever stricter emissions legislation the engines have become more sensitive to deposit formation resulting from changes in fuel quality. This paper reviews bouts of concern over diesel fuel injector deposits, possible causes for the phenomenon and test methods designed to screen fuels to eliminate problems.
Technical Paper

Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine

2012-04-16
2012-01-0148
Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
Technical Paper

A Model for the Investigation of Temperature, Heat Flow and Friction Characteristics During Engine Warm-Up

1993-04-01
931153
A computational model has been developed to support investigations of temperature, heat flow and friction characteristics, particularly in connection with warm-up behaviour. A lumped capacity model of the engine block and head, empirically derived correlations for local heat transfer and friction losses, and oil and coolant circuit descriptions form the core of the model. Validation of the model and illustrative results are reported.
Technical Paper

The Determination of Heat Transfer from the Combustion Chambers of SI Engines

1993-04-01
931131
Two methods of determining the rate of heat transfer from the combustion chamber have been investigated. A First Law analysis is shown to be ill-conditioned because of sensitivity to heat release and gas property calculations. An alternative approach equates cycle-averaged chamber heat transfer to the difference between heat rejected to the coolant and gas heat transfer to the exhaust port. This has been examined as a basis for calibrating the Woschni correlation.
Technical Paper

The Use of Vehicle Drive Cycles to Assess Spark Plug Fouling Performance

1994-02-01
940101
Spark plug fouling is a common problem when vehicles are repeatedly operated for very short periods, particularly at low temperatures. This paper describes a test procedure which uses a series of short, high-load drive cycles to assess plug fouling under realistic conditions. The engine is force cooled between drive cycles in order to increase test throughput. Spark plug resistance is shown to be a poor indicator of the effect of fouling on engine performance and the rate of misfiring is given as an alternative measure. An automated technique to detect misfires from engine speed data is described. This has been used to investigate the effect of spark plug type, fuelling level and spark timing on fouling. Spark plugs which are designed to run hotter are found to be more resistant to plug fouling. Isolated adjustments to fuelling level and spark timing calibrations within the range providing acceptable performance have a weak effect on susceptibility to plug fouling.
Technical Paper

Computer Aided Evaluation of Cold Start Fuelling Strategy and Calibration Details for Spark Ignition Engines

1994-02-01
940085
Spark ignition engines for automotive applications must have good cold start performance characteristics at sub-zero ambient temperatures. Satisfactory performance is most difficult to achieve at the lower end of the temperature range, typically around -30°C. The start characteristics of a particular engine depend on basic design features, starter motor characteristics, and the calibration and strategy used to regulate fuel supply during start up. The paper reports a computational model which enables the investigation of these with the minimum of experimental data. The model has been developed to run on desk-top PC machines, specifically as a CAE development tool. The formulation of the model and the experimental tests were used to generate the input data required for particular applications are described.
Technical Paper

Heat Transfer to the Combustion Chamber Walls in Spark Ignition Engines

1995-02-01
950686
The cycle-by-cycle variation of heat transferred per cycle (q) to the combustion chamber surfaces of spark ignition engines has been investigated for quasi-steady and transient conditions produced by throttle movements. The heat transfer calculation is by integration of the instantaneous value over the cycle, using the Woschni correlation for the heat transfer coefficient. By examination of the results obtained, a relatively simple correlation has been identified: This holds both for quasi-steady and transient conditions and is on a per cylinder basis. The analysis has been extended to define a heat flux distribution over the surface of the chamber. This is given by: where F(x/L) is a polynomial function, q″ is the heat transfer per cycle per unit area to head and piston crown surfaces and gives the distribution along the liner
X