Refine Your Search

Topic

Search Results

Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Technical Paper

A Phenomenological Unburned Hydrocarbon Model for Diesel Engines

2020-09-15
2020-01-2006
Intensified emission regulations as well as consumption demands lead to an increasing significance of unburned hydrocarbon (UHC) emissions for diesel engines. On the one hand, the quantity of hydrocarbon (HC) raw emissions is important for emission predictions as well as for the exhaust after treatment. On the other hand, HC emissions are also important for predicting combustion efficiency and thus fuel consumption, since a part of unreleased chemical energy of the fuel is still bound in the HC molecules. Due to these reasons, a simulation model for predicting HC raw emissions was developed for diesel engines based on a phenomenological two-zone model. The HC model takes three main sources of HC emissions of diesel engines into account: Firstly, it contains a sub-model that describes the fuel dribble out of the injector after the end of injection. Secondly, HC emissions from cold peripheral zones near cylinder walls are determined in another sub-model.
Technical Paper

Thixoforming Of Aluminum

1998-02-23
980456
Thixoforming is another word for Semi-Solid-Metalforming (SSM) which means that metal will be formed between solid and liquid temperature. In this state the material behavior is thixotropic. Aluminum alloys can be formed in this thixotropic state when 30 to 40% of the material is liquid. In this case it is possible to form the aluminum in a process that is located between the die-casting and the forging technology. The thixoforming process allows it to produce Near Net Shape aluminum-parts with high quality for the automotive industry. This paper is intended to give the reader some examples about and some insights into the possible applications of the thixoforming process.
Technical Paper

Life Cycle Engineering a Powerful Tool for Product Improvement

1998-11-30
982172
The Institute for Polymer Testing and Polymer Science of the University of Stuttgart has been investigating automotive parts, structures and cars during their life cycle in plenty cooperation with the European automobile producers and their suppliers for the last 9 years. Therefore a holistic approach has been developed to combine tasks from technique, economic and environment in a methodology called Life Cycle Engineering (LCE). The goal is to find a way to support designer and engineers as well as police makers and public with this three-dimensional interrelated information to have the possibility to manufacture future products in a more sustainable way without loosing contact two the traditional parameters technique and costs.
Technical Paper

Process Modeling in the Life Cycle Design - Environmental Modeling of Joining Technologies within the Automotive Industry -

1998-11-30
982190
For integrating Life Cycle Assessment into the design process it is more and more necessary to generate models of single life cycle steps respectively manufacturing processes. For that reason it is indispensable to develop parametric processes. With such disposed processes the aim could only be to provide a tool where parametric environmental process models are available for a designer. With such a tool and the included models a designer will have the possibility to make an estimation of the probable energy consumption and needed additive materials for the applied manufacturing technology. Likewise if he has from the technical point of view the opportunity, he can shift the applied joining technology in the design phase by changing for instance the design.
Technical Paper

Measurements and Simulations of Transient Switching Phenomena in Modern Passenger Cars

2004-03-08
2004-01-1704
Automotive electric and electronic devices are commonly tested with standard pulses at the battery lines according to ISO 7637-Part 1 and 2. As these pulses do not cover all disturbances that occur in modern passenger cars, each OEM defines its own additional test-pulses which makes it difficult for component suppliers to satisfy all existing requirements. The paper shows a comparison between measurement and simulation such as slow “ignition on” pulses of a modern passenger car. Additionally, the ability of the computing model to calculate the propagation of fast transients and characteristic pulses of currently used electric and electronic devices is demonstrated. This data can be used for the definition of new test-pulses.
Technical Paper

Combination of Hydraulic Multipoint Cushion System and Segment-Elastic Blankholders

1998-02-01
980077
The costs for development and production of draw dies for car outer panels are extremely high and should be reduced. Furthermore it is necessary to reduce the time for developing, designing and producing the dies for the production of parts. This paper discusses new press techniques, die designs and an adjustment program for press operators. The trend goes to single action presses with CNC-controlled multipoint cushion systems in the press table and to special designed dies. These systems lead to a more robust and reproducible forming process with improved product quality. This paper deals with: Cushion Systems, New Binder Designs for Draw Dies for Sheet Metal Automotive Parts, New Computer Program to Adjust the Blankholder Forces of Modern Hydraulic Cushion Systems of Single Action Presses and Pressure Measurement for Detecting the Pressure between the Blank and the Binders of Draw Dies for Sheet Metal Automotive Parts.
Technical Paper

Powernet Simulation as a Tool for the Development of a Highly Reliable Energy Supply for Safety Relevant Control Systems in X-By-Wire Vessels in the EU SPARC Project

2006-04-03
2006-01-0115
The EU SPARC Project (Secure Propelled Vehicle with Advanced Redundant Control) has developed a new system architecture that enables effective application of driver assisted systems in an X-by-wire powertrain. A major challenge in the conception of such a system is development of a reliable electrical energy supply. A simulation is the most important tool for enabling the fundamental aspects to work, as for example, a dimensioning of the powernet. This article explains our approach in this SPARC simulation. We provide suggestions through examples of how to find simulation solutions for powernet dimensioning, as well as for the conception and validation of energy management strategies.
Technical Paper

Fundamental Research and Draw Die Concepts for Deep Drawing of Tailored Blanks

1995-02-01
950921
According to the present state of knowledge, the use of “Tailored Blanks” with different sheet thicknesses and/or grades represents an interesting manufacturing alternative in the design and development of sheet metal parts in the automotive industry. In order to assess the forming behavior, fundamental research was conducted on laser and mash seam welded blanks. Based on this experimental findings, a segmented draw die was designed and built to determine the limits of the metal forming process by deep drawing of car body parts. The results with this draw die showed that a uniform blankholder pressure must be guaranteed during the forming process in the flange region of the part. This necessitated definite slots in the region of the weld line for the mash seam welded blanks. Furthermore, a die concept was presented to enable an equalization of both sheet thickness steps and sheet thickness fluctuations, without requiring replacement of the respective draw die components.
Technical Paper

3-Dimensional Description of Sheet Metal Surfaces

1995-02-01
950918
During sheet metal forming processes, the friction conditions have a decisive influence on forming limits, the robustness of the production process and the quality of the parts produced, with significant forces required to overcome friction between the sheet and the tools. If lot-to-lot reproducibility is to be guaranteed, an appropriate method of characterizing the sheet surface topography is needed to monitor the sheet metal fabrication process. Newly developed optical measurement techniques and computer workstation technology are presented which enable the topography of sheet surfaces to be described in three dimensions.
Technical Paper

Closed Loop Binder Force System

1996-02-01
960824
When drawing non-axissymmetric sheet metal parts it is necessary to control the flow of material between the lower and upper binder in such a manner that prevents the occurrence of both tears and wrinkles in the drawn part. One possibility for the control of the material flow is through the deliberate adjustment of the normal forces. If one can measure the flow-in of the material into the die cavity as a function of punch stroke with a special sensor, and if this information can be used to produce an empirical flow-in curve over the stroke for good parts, then it is possible to construct a closed- loop BHF control system. Building such control system is feasible by implementation of special dies with hydraulically supported segmented binders. This system allows an automatic response to a change in the friction conditions.
Technical Paper

Pulsating Blankholder Force

1997-02-24
970987
In sheet metal stamping some industrial applications have shown that it is possible to achieve larger drawn depth by using a pulsating blankholder force. In deep drawing, areas with and without tangential stresses have to be distinguished. Areas without tangential stresses can be described by the strip drawing test. Areas with tangential stresses are described by using a deep drawing die for the production of cups which are axisymmetric. With the strip drawing test it could be shown that it is possible to reduce the increase of the friction force, caused by adhesion. Another effect is the reduction of the peak of the transition of static to dynamic friction. It was shown by experimental research, that the wrinkle height of parts, produced with pulsating blankholder force is in the range of the wrinkle height of parts produced with a constant blankholder force which is equal to the maximum force of the pulsation.
Journal Article

Experimental and Numerical Investigation of a Full-Sized Aerodynamic Vehicle Model in Relation to Its Production Car

2021-04-06
2021-01-0963
In this paper, the differences between a production car of the 2018 A-class and an early stage vehicle model with a mostly similar outer skin are examined experimentally and numerically. The aerodynamic development of vehicles at Mercedes-Benz is divided into several phases. When comparing force coefficients differences can be observed between these distinct hardware stages as well as when comparing steady state simulations to wind tunnel measurements. In early phases when prototype vehicles are not yet available, so-called aero foam models are used. These are well-defined full-sized vehicle models, as the outer skin is milled from Polyurethane. Important aerodynamic characteristics such as a motor compartment with a cooling module, deflecting axles with rotatable wheels and underbody covers are represented.
Journal Article

Low-Temperature NOx Reduction by H2 in Diesel Engine Exhaust

2022-03-29
2022-01-0538
For the NOx removal from diesel exhaust, the selective catalytic reduction (SCR) and lean NOx traps are established technologies. However, these procedures lack efficiency below 200 °C, which is of importance for city driving and cold start phases. Thus, the present paper deals with the development of a novel low-temperature deNOx strategy implying the catalytic NOx reduction by hydrogen. For the investigations, a highly active H2-deNOx catalyst, originally engineered for lean H2 combustion engines, was employed. This Pt-based catalyst reached peak NOx conversion of 95 % in synthetic diesel exhaust with N2 selectivities up to 80 %. Additionally, driving cycle tests on a diesel engine test bench were also performed to evaluate the H2-deNOx performance under practical conditions. For this purpose, a diesel oxidation catalyst, a diesel particulate filter and a H2 injection nozzle with mixing unit were placed upstream to the full size H2-deNOx catalyst.
Technical Paper

Alternative Fuels for Fuel Cell Powered Buses in Comparison to Diesel powered Buses

2000-04-26
2000-01-1484
Introducing a new fuel alternative to gasoline is a very complex task. According to their short to mid term economical feasibility selected processes are modeled. Selected emissions and the primary energy demand of the production and the utilization of hydrogen and methanol as fuels for fuel cell powered buses are compared to conventional diesel powered buses. Different production routes for the alternative fuels are considered. Ecological and economical numbers are given and interpreted.
Technical Paper

LCA Based Design for Environment in the Automotive Industry

2000-04-26
2000-01-1517
Life cycle assessment offers a suitable methodology to evaluate environmental impacts over the total life cycle of the car. Indeed the effort for LCA studies of complex products like cars is very high. Design for environment tools can help to reduce the effort for environmental evaluation because of their direct integration in the designers workflow. As DFE is not standardized, it should be based on the reliable data from LCA. A connection between LCA and DFE offers the possibility to integrate environmental evaluation with tolerable effort directly in the design process while keeping the transparency and reliability of LCA.
Technical Paper

Pulsating Blankholder Technology

1999-09-28
1999-01-3155
In this paper the effects of pulsating blankholder forces in deep draw processes for sheet metal parts are discussed. Areas with and without tangential compressive stresses in the flanges, which are located between the binders, are discussed separately. Areas without tangential compressive stresses can be simulated by a special friction strip-draw test using a pulsating normal force ( representing the blankholder force ). Investigations using this equipment show that by pulsating blankholder forces it is possible to avoid galling and to reduce the friction force. Areas with tangential compressive stresses can be simulated by deep drawing axissymmetric cups using a pulsating blankholder force. Investigations with this equipment show that without increasing the danger of wrinkling the friction forces can be reduced by pulsating blankholder forces, when a certain frequency limit is reached.
Technical Paper

New Machine Concept for Hydroforming Tubes and Extrusions, Part 2

1999-09-28
1999-01-3158
In cooperation with industrial companies at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart, Germany, a new press concept specially for hydroforming tubes and extrusions was developed. The press has a capacity of 3500 tons closing force and a press table size of 2500 mm × 900 mm. A great reduction in costs can be achieved by integrating spacers between the frame of the press and the ram. This paper introduces this new press.
Technical Paper

Rapid CFD Simulation of Internal Combustion Engines

1999-03-01
1999-01-1185
Multi-dimensional modelling of the flow and combustion promises to become a useful optimisation tool for IC engine design. Currently, the total simulation time for an engine cycle is measured in weeks to months, thus preventing the routine use of CFD in the design process. Here, we shall describe three tools aimed at reducing the simulation time to less than a week. The rapid template-based mesher produces the computational mesh within 1-2 days. The parallel flow solver STAR-CD performs the flow simulation on a similar time-scale. The package is completed with COVISEMP, a parallel post-processor which allows real-time interaction with the data.
Technical Paper

Simulation Based Solutions for Industrial Manufacture of Large Infusion Composite Parts

2014-04-01
2014-01-0965
Today, LRI is a proven manufacturing technology for both small and large scale structures (e.g. sailboats) where, in most cases, experience and limited prototype experimentation is sufficient to get a satisfactory design. However, large scale aerospace (and other) structures require reproducible, high quality, defect free parts, with excellent mechanical performance. This requires precise control and knowledge of the preforming (draping and manufacture of the composite fabric preforms), their assembly and the resin infusion. The INFUCOMP project is a multi-disciplinary research project to develop necessary Computer Aided Engineering (CAE) tools for all stages of the LRI manufacturing process. An ambitious set of developments have been undertaken that build on existing capabilities of leading drape and infusion simulation codes available today. Currently the codes are only accurate for simple drape problems and infusion analysis of RTM parts using matched metal molds.
X