Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Load Distribution-Specific Viscoelastic Characterization of the Hybrid III Chest

2002-03-04
2002-01-0024
This paper presents a load distribution-specific viscoelastic structural characterization of the Hybrid III 50th percentile male anthropomorphic test dummy thorax. The dummy is positioned supine on a high-speed material testing machine and ramp-and-hold tests are performed using a distributed load, a hub load, and a diagonal belt load applied to the anterior thorax of the dummy. The force-deflection response is shown to be linear viscoelastic for all loading conditions when the internal dummy instrumentation is used to measure chest deflection. When an externally measured displacement (i.e., a measurement that includes the superficial skin material) is used for the characterization, a quasilinear viscoelastic characterization is necessary. Linear and quasilinear viscoelastic model coefficients are presented for all three loading conditions.
Technical Paper

Open-Loop Chestbands for Dynamic Deformation Measurements

1998-02-23
980857
Originally designed for measuring closed-loop contours such as those around a human thorax, the External Peripheral Instrument for Deformation Measurement (EPIDM), or chestband, was developed to improve the measurement of dummy and cadaver thoracic response during impact. In the closed-loop configuration, the chestband wraps around on itself forming a closed contour. This study investigates the use of the chestband for dynamic deformation measurements in an open-loop configuration. In the open-loop configuration, the chestband does not generally form a closed contour. This work includes enhanced procedures and algorithms for the calculation of chestband deformation contours including the determination of static and dynamic chestband contours under several boundary conditions.
Technical Paper

Subcompact Vehicle Energy-Absorbing Steering Assembly Evaluation

1978-02-01
780899
This paper describes the results of a 2 year study into the field accident performances of two basic designs of energy-absorbing steering assemblies. The two basic designs are the axial-collapse type of steering column used in conjunction with a shear capsule and the self-aligning energy-absorbing steering wheel mounted on a nonstroking column. The study identifies major injury causation factors for these two types of steering assemblies. The analysis was performed on 161 accident cases selected for unrestrained drivers in frontal accidents in two vehicle types.
Technical Paper

Development and Design of Thor-Lx: The Thor Lower Extremity

1999-10-10
99SC09
A new lower extremity has been developed to be used with Thor, the NHTSA Advanced Frontal Dummy. The new lower extremity, known as Thor-Lx, consists of the femur, tibia, ankle joints, foot, a representation of the Achilles' tendon and the associated flash/skins, it has been designed to improve biomechanical response under axial loading of the femur during knee impacts, axial loading of the tibia, static and dynamic dorsiflexion, static plantarflexion and inversion/aversion. Instrumentation includes a standard Hybrid ill femur load cell, accelerometers, load cells, and rotary potentiometers to capture relevant kinematic and dynamic information from the foot and tibia. The design also allows the Tnor-Lx to be attached to the Hybrid III, either at the hip, or at the knee.
Technical Paper

Development of THOR-FLx: A Biofidelic Lower Extremity for Use with 5th Percentile Female Crash Test Dummies

2002-11-11
2002-22-0014
A new lower leg/ankle/foot system has been designed and fabricated to assess the potential for lower limb injuries to small females in the automotive crash environment. The new lower extremity can be retrofitted at present to the distal femur of the 5th percentile female Hybrid III dummy. Future plans are for integration of this design into the 5th percentile female THOR dummy now under development. The anthropometry of the lower leg and foot is based mainly on data developed by Robbins for the 5th percentile female, while the biomechanical response requirements are based upon scaling of 50th percentile male THOR-Lx responses. The design consists of the knee, tibia, ankle joints, foot, a representation of the Achilles tendon, and associated flesh/skins. The new lower extremity, known as THOR-FLx, is designed to be biofidelic under dynamic axial loading of the tibia, static and dynamic dorsiflexion, static plantarflexion and inversion/eversion.
Technical Paper

Characterizing Galling Conditions in Sheet Metal Stamping

2024-04-09
2024-01-2856
Multiple experimental studies were performed on galling intiation for variety of tooling materials, coatings and surface treatments, sheet materials with various surface textures and lubrication. Majority of studies were performed for small number of samples in laboratory conditions. In this paper, the methodology of screening experiment using different combinations of tooling configurations and sheet material in the lab followed by the high volume small scale U-bend performed in the progressive die on the mechanical press is discussed. The experimental study was performed to understand the effect of the interface between the sheet metal and the die surface on sheet metal flow during stamping operations. Aluminum sheet AA5754 2.5mm thick was used in this experimentation. The sheet was tested in laboratory conditions by pulling between two flat insert with controllable clamping force and through the drawbead system with variable radii of the female bead.
X