Refine Your Search

Topic

Author

Search Results

Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

Finite Element Modeling of Tire Transient Characteristics in Dynamic Maneuvers

2014-04-01
2014-01-0858
Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of tire dynamic maneuvers. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a three-dimensional finite element model (FEM) has been developed using the commercial software package ABAQUS. The purpose of this study is to investigate the tire dynamic behavior in multiple case studies in which the transient characteristics are highly involved.
Journal Article

Road Profile Estimation for Active Suspension Applications

2015-04-14
2015-01-0651
The road profile has been shown to have significant effects on various vehicle conditions including ride, handling, fatigue or even energy efficiency; as a result it has become a variable of interest in the design and control of numerous vehicle parts. In this study, an integrated state estimation algorithm is proposed that can provide continuous information on road elevation and profile variations, primarily to be used in active suspension controls. A novel tire instrumentation technology (smart tire) is adopted together with a sensor couple of wheel attached accelerometer and suspension deflection sensor as observer inputs. The algorithm utilizes an adaptive Kalman filter (AKF) structure that provides the sprung and unsprung mass displacements to a sliding-mode differentiator, which then yields to the estimation of road elevations and the corresponding road profile along with the quarter car states.
Journal Article

Vehicle System Simulator: Development and Validation

2011-09-13
2011-01-2166
A graphical user interface (GUI) toolbox called Vehicle System Simulator (VSS) is developed in MATLAB to ease the use of this vehicle model and hopefully encourage its widespread application in the future. This toolbox uses the inherent MATLAB discrete-time solvers and is mainly based on Level-2 s-function design. This paper describes its built-in vehicle dynamics model based on multibody dynamics approach and nonlinear tire models, and traction/braking control systems including Cruise Control and Differential Braking systems. The built-in dynamics model is validated against CarSim 8 and the simulation results prove its accuracy. This paper illustrates the application of this new MATLAB toolbox called Vehicle System Simulator and discusses its development process, limitations, and future improvements.
Journal Article

Design Tradeoffs: The Social Costs of Vehicle Fire Protection

2012-04-16
2012-01-0985
Rational design for fire safety necessarily includes consideration of risk tradeoffs that tend to reduce one risk but may increase another. Traditional engineering design criteria can be supplemented with important factors that rely on expertise from other disciplines. Engineering analysis may be able to address reduction in fire risk due to the introduction of new technology, but may not address the social costs associated with this new technology. For example, the resultant increase in vehicle cost may prevent some people from purchasing a vehicle (impacting individuals' lives), may reduce the number of vehicles sold (impacting manufacturers), and may reduce taxes collected (impacting the government). This must be weighed against decreased risk of property damage, injury, and fatality due to fire. In this paper, the methods of benefit-cost analysis from economics were applied to make this evaluation.
Journal Article

Validation of Event Data Recorders in Side-Impact Crash Tests

2014-04-01
2014-01-0503
This study evaluated the accuracy of 75 Event Data Recorders (EDRs) extracted from model year 2010-2012 Chrysler, Ford, General Motors, Honda, Mazda, and Toyota vehicles subjected to side-impact moving deformable barrier crash tests. The test report and vehicle-mounted accelerometers provided reference values to assess the EDR reported change in lateral velocity (delta-v), seatbelt buckle status, and airbag deployment status. Our results show that EDRs underreported the reference lateral delta-v in the vast majority of cases, mimicking the errors and conclusions found in some longitudinal EDR accuracy studies. For maximum lateral delta-v, the average arithmetic error was −3.59 kph (−13.8%) and the average absolute error was 4.05 kph (15.9%). All EDR reports that recorded a seatbelt buckle status data element correctly recorded the buckle status at both the driver and right front passenger locations.
Technical Paper

Modification of the Internal Flows of Thermal Propulsion Systems Using Local Aerodynamic Inserts

2020-09-15
2020-01-2039
Modern thermal propulsion systems (TPS) as part of hybrid powertrains are becoming increasingly complex. They have an increased number of components in comparison to traditionally powered vehicles leading to increased demand in packaging requirements. Many of the components in these systems relate to achieving efficiency gains, weight saving and pollutant reduction. This includes turbochargers and diesel or gasoline particulate filters for example and these are known to be very sensitive to inlet boundary conditions. When overcoming packaging requirements, sub-optimal flow distributions throughout the TPS can easily occur. Moreover, the individual components are often designed in isolation assuming relatively flat and artificially quiescent inlet flow conditions in comparison to those they are actually presented with. Thus, some of the efficiency benefits are lost through reduced component aerodynamic efficiency.
Technical Paper

Artifact vs. Anatomy: Dealing with Conflict of Geometric Modeling Descriptions

2007-06-12
2007-01-2450
In applications ranging from design of customized vehicle interiors to virtual testing of biomedical devices, the processes of modeling, design and analysis involve the simultaneous treatment of artifacts (i.e., parts designed by humans) and anatomical structures. An inherent conflict arises because the geometric descriptions are completely different. Artifact descriptions are typically the output of computer-aided design (CAD) software and consist of a collection of parametric patches that comprise the boundary of the artifact. In stark contrast, the native description of an anatomical structure typically consists of an image stack obtained using a volumetric scanning technology such as computed tomography (CT) or magnetic resonance imaging (MRI). Current practice for simultaneously dealing with both categories of entities involves working primarily in the world of CAD.
Technical Paper

Target Population for Injury Reduction from Pre-Crash Systems

2010-04-12
2010-01-0463
Pre-Crash Systems (PCS) integrate the features of active and passive safety systems to reduce both crash and injury severity. Upon detection of an impending collision, PCS can provide an early warning to the driver and activate automatic braking to reduce the crash severity for the subject vehicle. PCS can also activate the seatbelt pretensioners prior to impact. This paper identifies the opportunities for injury prevention in crash types for which PCS can be potentially activated. These PCS applicable crash types include rear-end crashes, single vehicle crashes into objects (trees, poles, structures, parked vehicles), and head-on crashes. PCS can benefit the occupants of both the striking and struck vehicle. In this paper, the opportunity for injury reduction in the struck vehicle is also tabulated. The study is based upon the analysis of approximately 20,000 frontal crash cases extracted from NASS / CDS 1997-2008.
Technical Paper

Development of Auditory Warning Signals for Mitigating Heavy Truck Rear-End Crashes

2010-10-05
2010-01-2019
Rear-end crashes involving heavy trucks occur with sufficient frequency that they are a cause of concern within regulatory agencies. In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks which resulted in 135 fatalities. As part of the Federal Motor Carrier Safety Administration's (FMCSA) goal of reducing the overall number of truck crashes, the Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Researchers also utilized what had been learned in the rear-end crash avoidance work with light vehicles that was conducted by the National Highway Traffic Safety Administration (NHTSA) with Virginia Tech Transportation Institute (VTTI) serving as the prime research organization. ERS crash countermeasures investigated included passive conspicuity markings, visual signals, and auditory signals.
Technical Paper

A Simulation-Based Study on the Improvement of Semi-Truck Roll Stability in Roundabouts

2016-09-27
2016-01-8038
This paper studies the effect of different longitudinal load conditions, roundabout cross-sectional geometry, and different semi-truck pneumatic suspension systems on roll stability in roundabouts, which have become more and more popular in urban settings. Roundabouts are commonly designed in their size and form to accommodate articulated heavy vehicles (AHVs) by evaluating such affects as off-tracking. However, the effect of the roadway geometry in roundabouts on the roll dynamics of semi-tractors and trailers are equally important, along with their entry and exit configuration. , Because the effect of the roundabout on the dynamics of trucks is further removed from the immediate issues considered by roadway planner, at times they are not given as much consideration as other roadway design factors.
Technical Paper

Simulation and Bench Testing of a GM 5.3L V8 Engine

2017-03-28
2017-01-1259
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently modeling and bench testing powertrain components for a parallel plug-in hybrid electric vehicle (PHEV). The custom powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. The engine, a General Motors (GM) L83 5.3L V8 with Active Fuel Management (AFM) from a 2014 Silverado, is of particular importance for vehicle integration and functionality. The engine is one of two torque producing components in the powertrain. AFM allows the engine to deactivate four of the eight cylinders which is essential to meet competition goals to reduce petroleum energy use and greenhouse gas emissions. In-vehicle testing is performed with a 2014 Silverado on a closed course to understand the criteria to activate AFM. Parameters required for AFM activation are monitored by recording vehicle CAN bus traffic.
Technical Paper

An Extended-Range Electric Vehicle Control Strategy for Reducing Petroleum Energy Use and Well-to-Wheel Greenhouse Gas Emissions

2011-04-12
2011-01-0915
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2008 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Laboratory (ANL) and sponsored by General Motors (GM) and the U.S. Department of Energy (DoE). Following GM's vehicle development process, HEVT established goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in, range-extended hybrid electric vehicle. The challenge involves designing a crossover SUV powertrain to reduce fuel consumption, petroleum energy use and well-to-wheels (WTW) greenhouse gas (GHG) emissions. In order to interface with and control the vehicle, the team added a National Instruments (NI) CompactRIO (cRIO) to act as a hybrid vehicle supervisory controller (HVSC).
Technical Paper

Development and Validation of an E85 Split Parallel E-REV

2011-04-12
2011-01-0912
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended-range hybrid electric vehicle. The competition requires participating teams to improve and redesign a stock Vue XE donated by GM. The result of this design process is an Extended-Range Electric Vehicle (E-REV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design is predicted to achieve an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an estimated all electric range of 69 km (43 miles) [1].
Technical Paper

Preliminary Estimates of Near Side Crash Injury Risk in Best Performing Passenger Vehicles

2018-04-03
2018-01-0548
The goal of this paper is to estimate near-side injury risk in vehicles with the best side impact performance in the U.S. New Car Assessment Program (NCAP). The longer-term goal is to predict the incidence of crashes and injury outcomes in the U.S. in a future fleet of the 2025-time frame after current active and passive safety countermeasures are fully implemented. Our assumption was that, by 2025, all new vehicles will have side impact passive safety performance equivalent to current U.S. NCAP five star ratings. The analysis was based on real-world crashes extracted from case years 2010-2015 in the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) in which front-row occupants of late-model vehicles (Model Year 2011+) were exposed to a near-side crash.
Technical Paper

Refinement and Testing of an E85 Split Parallel EREV

2012-04-16
2012-01-1196
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended range hybrid electric vehicle. The competition requires participating teams to re-engineer a stock crossover utility vehicle donated by GM. The result of this design process is an Extended Range Electric Vehicle (EREV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design has achieved an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an all-electric range of 87 km (54 miles) [1].
Technical Paper

Hybrid Architecture Selection to Reduce Emissions and Petroleum Energy Consumption

2012-04-16
2012-01-1195
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012 - 2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption, WTW greenhouse gas and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP), HEVT will design, build, and refine an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle. In year 1 of the competition, HEVT has designed a powertrain to meet and exceed the goals of the competition.
Technical Paper

CALVIN: Winner of the Fourth Annual Unmanned Ground Vehicle Design Competition

1997-02-24
970174
The Unmanned Ground Vehicle Competition is jointly sponsored by the SAE, the Association for Unmanned Vehicle Systems (AUVS), and Oakland University. College teams, composed of both undergraduate and graduate students, build autonomous vehicles that compete by navigating a 139 meter outdoor obstacle course. The course, which includes a sand pit and a ramp, is defined by painted continuous or dashed boundary lines on grass and pavement. The obstacles are arbitrarily placed, multi-colored plastic-wrapped hay bales. The vehicles must be between 0.9 and 2.7 meters long and less than 1.5 meters wide. They must be either electric-motor or combustion-engine driven and must carry a 9 kilogram payload. All computational power, sensing and control equipment must be carried on board the vehicle. The technologies employed are applicable in Intelligent Transportation Systems (ITS).
Technical Paper

Frictional Behavior of Automotive Interior Polymeric Material Pairs

1997-05-20
972056
As automotive manufacturers continue to increase their use of thermoplastics for interior components (due to cost, weight, …), the potential for frictionally incompatible materials contacting each other, resulting in squeaks and rattles, will also increase. This will go counter to the increased customer demand for quieter interiors. To address this situation, Ford's Advanced Vehicle Technology Squeak and Rattle Prevention Engineering Department and Virginia Tech have developed a tester that can measure friction as a function of relative sliding velocity during frictional instabilities such as stick slip. The Ford/VT team is developing a polymeric material pairing database that will be used as a guide for current and future designs to eliminate potential squeak concerns. Based upon the database, along with a physical property analysis of the various plastic (viscoelastic) materials used in the interior, an analytical model will be developed as a tool to predict frictional behavior.
Technical Paper

Developing a Compact Continuous-State Markov Chain for Terrain Road Profiles

2013-04-08
2013-01-0629
Accurate terrain models provide the chassis designer with a powerful tool to make informed design decisions early in the design process. It is beneficial to characterize the terrain as a stochastic process, allowing limitless amounts of synthetic terrain to be created from a small number of parameters. A continuous-state Markov chain is proposed as an alternative to the traditional discrete-state chain currently used in terrain modeling practice. For discrete-state chains, the profile transitions are quantized then characterized by a transition matrix (with many values). In contrast, the transition function of a continuous-state chain represents the probability density of transitioning between any two states in the continuum of terrain heights. The transition function developed in this work uses a location-scale distribution with polynomials modeling the parameters as functions of the current state.
X