Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Efficient Electro-Thermal Model for Lithium Iron Phosphate Batteries

2018-04-03
2018-01-0432
The development of a comprehensive battery simulator is essential for future improvements in the durability, performance and service life of lithium-ion batteries. Although simulations can never replace actual experimental data, they can still be used to provide valuable insights into the performance of the battery, especially under different operating conditions. In addition, a single-cell model can be easily extended to the pack level and can be used in the optimization of a battery pack. The first step in building a simulator is to create a model that can effectively capture both the voltage response and thermal behavior of the battery. Since these effects are coupled together, creating a robust simulator requires modeling both components. This paper will develop a battery simulator, where the entire battery model will be composed of four smaller submodels: a heat generation model, a thermal model, a battery parameter model and a voltage response model.
Technical Paper

A Review Study of Methods for Lithium-ion Battery Health Monitoring and Remaining Life Estimation in Hybrid Electric Vehicles

2012-04-16
2012-01-0125
Due to the high power and energy density and also relative safety, lithium ion batteries are receiving increasing acceptability in industrial applications especially in transportation systems with electric traction such as electric vehicles and hybrid electric vehicles. In this regard, to ensure performance reliability, accurate modeling of calendar life of such batteries is a necessity. In fact, potential failure of Li-ion battery packs remains a barrier to commercialization. Battery pack life is a critical feature to warranty and maintenance planning for hybrid vehicles, and will require adaptive control systems to account for the loss in vehicle range, and loss in battery charge and discharge efficiency. Failure not only results in large replacement costs, but also potential safety concerns such as overheating or short circuiting which may lead to fires.
Technical Paper

Impact of Temperature on the A123 Li-Ion Battery Performance and Hybrid Electric Vehicle Range

2013-04-08
2013-01-1521
Within the last decade, the automotive industry has made major progress toward the electrification of drive trains and application of electrochemical power sources. Among available storage solutions, Li-ion batteries are considered as the most attractive and are set to be used in the next generation of hybrid and electric vehicles. This is due to their superiority in energy density, power density, and low self-discharge and high cycle life compared to other chemistries. However, there are some limitations associated with Li-ion battery; among them is the operating temperature range. Any deviation from a narrow temperature range may result in low overall performance and potential degradation of the cells. In this paper, impact of ambient temperature on the A123 Li-ion batteries performance is investigated. A123 cells have been tested under constant charge-discharge cycles, hybrid pulse power characterization (HPPC) tests and also standard drive cycle tests.
Technical Paper

Fuel Cell Hybrid Control Strategy Development

2006-04-03
2006-01-0214
Supervisory control strategies for a hybrid fuel cell powertrain are developed and simulated using Simulink models and the Powertrain Systems Analysis Toolkit (PSAT). The control strategy selects the power splitting ratio between a 65kW Hydrogenics fuel cell power module and a 70kW Cobasys Nickel Metal Hydride (NiMH) battery pack. Simple control algorithms targeting a battery pack State of Charge (SOC), or maximizing the instantaneous powertrain efficiency are initially considered and analyzed. A comprehensive control strategy optimizing powertrain efficiency, vehicle performance, emissions, and long-term reliability is then developed and simulated. The simulated vehicle using the comprehensive control strategy with reliability considerations exhibits a 21% mileage improvement as compared to a simple rule-based control algorithm.
Technical Paper

Fuel Cell Hybrid Powertrain Design Approach for a 2005 Chevrolet Equinox

2006-04-03
2006-01-0744
A fuel cell-battery hybrid powertrain SUV vehicle is designed using an optimized model-based design process. Powertrain and fuel storage components selected include a 65 kW Polymer Electrolyte Membrane Fuel Cell (PEMFC) power module, two 67 kW electric traction motors, a 35 MPa compressed hydrogen storage tank, a 70 kW nickel metal hydride battery pack, and a University of Waterloo in-house DC/DC converter design. Hardware control uses two controllers, a main supervisory controller and a subsystem controller in addition to any embedded component control modules. Two key innovations of this work include the hybrid control strategy and the DC/DC converter. The final powertrain characteristics are expected to meet a set of Vehicle Technical Specifications (VTS).
Technical Paper

Modeling and Evaluation of Li-Ion Battery Performance Based on the Electric Vehicle Field Tests

2014-04-01
2014-01-1848
In this paper, initial results of Li-ion battery performance characterization through field tests are presented. A fully electrified Ford Escape that is equipped by three Li-ion battery packs (LiFeMnPO4) including an overall 20 modules in series is employed. The vehicle is in daily operation and data of driving including the powertrain and drive cycles as well as the charging data are being transferred through CAN bus to a data logger installed in the vehicle. A model of the vehicle is developed in the Powertrain System Analysis Toolkit (PSAT) software based on the available technical specification of the vehicle components. In this model, a simple resistive element in series with a voltage source represents the battery. Battery open circuit voltage (OCV) and internal resistance in charge and discharge mode are estimated as a function of the state of charge (SOC) from the collected test data.
Technical Paper

Evaluation of Air Conditioning Impact on the Electric Vehicle Range and Li-Ion Battery Life

2014-04-01
2014-01-1853
Despite significant progress toward application of Li-ion batteries in electric vehicles, there are still major concerns about the range of electric vehicles and battery life. Depending on the climate of the region where the vehicle is in use, auxiliary loads could also play a significant role on the battery performance and durability. In this paper, the effect of air conditioning (AC) load on the electric range and Li-ion battery life is evaluated. For this purpose, a thermodynamic model for the vehicle cabin is developed and integrated to a battery model. The thermodynamic model takes the ambient conditions, solar load, and the vehicle drive cycle as inputs and calculates the instantaneous cabin temperature and humidity. The battery model, which represents a Li-on battery pack installed on a fully electrified Ford Escape 2009, consists of a voltage source in series with a lump resistance, a thermal sub-model, and a degradation sub-model to predict the battery capacity fade.
Technical Paper

Development of a High-Fidelity Series-Hybrid Electric Vehicle Model using a Mathematics-Based Approach

2011-05-17
2011-39-7201
The recent increase in oil prices and environmental concerns have attracted various research efforts on hybrid electric vehicles (HEVs) which provide promising alternatives to conventional engine-powered vehicles with better fuel economy and fewer emissions. To speed up the design and prototyping processes of new HEVs, a method that automatically generates mathematics equations governing the vehicle system response in an optimized symbolic form is desirable. To achieve this goal, we employed MapleSimTM, a new physical modeling tool developed by Maplesoft Inc., to develop the multi-domain model of a series-HEV, utilizing the symbolic computing algorithms of Maple software package to generate an optimized set of governing equations. The HEV model consists of a mean-value internal combustion engine (ICE), a chemistry-based Ni-MH battery pack, and a multibody vehicle model. Simulations are then used to demonstrate the performance of the developed HEV system.
Technical Paper

Parameter Optimization and Characterization of Aluminum-Copper Laser Welded Joints

2024-04-09
2024-01-2428
Battery packs of electric vehicles are typically composed of lithium-ion batteries with aluminum and copper acting as cell terminals. These terminals are joined together in series by means of connector tabs to produce sufficient power and energy output. Such critical electrical and structural cell terminal connections involve several challenges when joining thin, highly reflective and dissimilar materials with widely differing thermo-mechanical properties. This may involve potential deformation during the joining process and the formation of brittle intermetallic compounds that reduce conductivity and deteriorate mechanical properties. Among various joining techniques, laser welding has demonstrated significant advantages, including the capability to produce joints with low electrical contact resistance and high mechanical strength, along with high precision required for delicate materials like aluminum and copper.
X