Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

The Effect of Backing Profile on Cutting Blade Wear during High-Volume Production of Carbon Fiber-Reinforced Composites

2018-04-03
2018-01-0158
Carbon fiber sheet molding compound (SMC) is an attractive material for automotive lightweighting applications, but several issues present themselves when adapting a process developed for glass fiber composites to instead use carbon fibers. SMC is a discontinuous fiber material, so individual carbon fiber tows must be chopped into uniform rovings before being compounded with the resin matrix. Rotary chopping is one such method for producing rovings, but high wear rates are seen when cutting carbon fibers. Experiments were performed to investigate the wear progression of cutting blades during rotary carbon fiber chopping. A small rotary chopper with a polyurethane (PU) backing and thin, hardened steel blades was used to perform extended wear tests (120,000 chops, or until failure to reliably chop tows) to simulate the lifespan of blades during composite material production.
Journal Article

Simulation of the Axial Cutting Deformation of AA6061-T6 Round Tubes Utilizing Eulerian and Mesh Free Finite Element Formulations

2008-04-14
2008-01-1117
Experimental and numerical studies have been completed on the deformation behaviour of round AA6061-T6 aluminum extrusions during an axial cutting deformation mode employing both curved and straight deflectors to control the bending deformation of petalled side walls. Round extrusions of length 200 mm with a nominal wall thickness of 3.175 mm and an external diameter of 50.8 mm were considered. A heat treated 4140 steel alloy cutter and deflectors, both straight and curved, were designed and manufactured for the testing considered. The four blades of the cutter had an approximate average thickness of 1.00 mm which were designed to penetrate through the round AA6061-T6 extrusions. Experimental observations illustrated high crush force efficiencies of 0.82 for the extrusions which experienced the cutting deformation mode with the deflectors. Total energy absorption during the cutting process was approximately 5.48 kJ.
Journal Article

Implementation of Child Biomechanical Neck Behaviour into the Hybrid III Crash Test Dummy

2008-04-14
2008-01-1120
This research focuses on comparing the biomechanical response of the head and neck of the Hybrid III 3-year-old anthropometric test device finite element model and pediatric cadaver data, under flexion-extension bending and axial tensile loading conditions. Previous experimental research characterized the quasi-static biomechanical response of the pediatric cervical spine under flexion-extension bending and tolerance in tensile distraction loading conditions. Significant differences in rotational and linear stiffness were found between the Hybrid III model and the pediatric cadaver data. In this research the biomechanical child cadaver neck response has been implemented into the 3-year-old Hybrid III child dummy FE model. An explicit finite element code (LS-DYNA) and the modified Hybrid III model were used to numerically simulate the previous cadaver tests and validate the altered Hybrid III neck.
Technical Paper

Responses of the Q3, Hybrid III and a Three Year Old Child Finite Element Model Under a Simulated 213 Test

2008-04-14
2008-01-1121
This research focuses on the response of the Q3, Hybrid III 3-year-old dummy and a child finite element model in a simulated 213 sled test. The Q3 and Hybrid III 3-year old child finite element models were developed by First Technology Safety Systems. The 3-year-old child finite element model was developed by Nagoya University by model-based scaling from the AM50 (50 percentile male) total human model for safety. The child models were positioned in a forward facing, five-point child restraint system using Finite Element Model Builder. An acceleration pulse acquired from an experimental 213 sled test, which was completed following the guidelines outlined in the Federal Motor Vehicle Safety Standard 213 using a Hybrid III 3-year-old dummy, was applied to the seat buck supporting the child restraint seat. The numerical simulations utilizing the Q3, Hybrid III 3-year-old and the child finite element model were conducted using the explicit non-linear finite element code LS-DYNA.
Technical Paper

Roof Strength Requirement for Vehicles Involved in Rollover Crash

2008-04-14
2008-01-0510
Rollover crash is one of the most serious safety problems for light weight vehicles. In the USA, rollover crashes account for almost one-third of all occupant fatalities in light weight vehicles. Similar statistics are found for other countries. Thus, rollover crashes have received significant attention in recent years. In the USA and Canada, automotive manufacturers are required to comply with the roof strength requirement of “1.5 times the unloaded vehicle weight” to ensure safety in rollover. NHTSA is currently considering a set of countermeasures to improve the rollover safety, where one of the proposals is to increase the roof strength limit to “2.5 times the unloaded vehicle weight”. This increased roof strength limit seemingly has been motivated based on the benchmark study of current vehicle fleet.
Technical Paper

Implementation of Child Biomechanical Neck Behaviour into a Child FE Model

2009-04-20
2009-01-0472
This research focuses on the further development of a child finite element model whereby implementation of pediatric cadaver testing observations considering the biomechanical response of the neck of children under tensile and bending loading has occurred. Prior to this investigation, the biomechanical neck response was based upon scaled adult cadaver behaviour. Alterations to the material properties associated with ligaments, intervertebral discs and facet joints of the pediatric cervical spine were considered. No alteration to the geometry of the child neck finite element model was considered. An energy based approach was utilized to provide indication on the appropriate changes to local neck biomechanical characteristics. Prior to this study, the biomechanical response of the neck of the child finite element model deviated significantly from the tensile and bending cadaver tests completed by Ouyang et al.
Technical Paper

Jack Stands in North American Rally - A Design Proposal

2008-12-02
2008-01-2970
Rally cars are among the most technologically advanced and complex race cars, with intercooled forced induction, adaptive all wheel drive and high-feature engine management being standard features for open class racers in all major North American Rally series. This high level of technology and complexity places additional burden on the service crews and mechanics charged with the task of preparing and repairing the vehicles during the competition. As such, it is of great importance that the brief service stops (thirty minutes per FIA regulation 17.2.2 [2008]) be executed as efficiently as possible. In the pursuit of valuable seconds, rally mechanics have shown a great deal of ingenuity, creating tools and procedures which are unique to the sport. One such innovation is the peg-style jack stand.
Technical Paper

Uses for Stabilized Aluminum Foam in Crashworthiness and Strengthening Applications

2003-03-03
2003-01-1295
Stabilized Aluminum Foam (SAF) is a material produced by introducing gas bubbles into molten aluminum. Two examples will be used to illustrate the potential use of SAF in energy absorption and structural reinforcement applications. The first is use of SAF in a crashbox to absorb energy in a 15km/hr collision and prevent damage to the rails as part of a front-end energy management system. The second is as a filler in a hollow structure subject to bending loads, which potentially could find application in rails and pillars. By filling a hollow structure with SAF, the bending strength is increased dramatically while the weight increases are not significant. Numerical modeling using LS DYNA gave very good agreement with experimental results.
Technical Paper

General and Galvanic Corrosion Behavior of Aluminized Ultra-High Strength Steel (UHSS) and Magnesium Alloy AZ35 Altered by Plasma Electrolytic Oxidation Coating Processes

2017-03-28
2017-01-0506
Ultra-high strength steel (UHSS) and magnesium (Mg) alloy have found their importance in response to automotive strategy of light weighting. UHSS to be metal-formed by hot stamping usually has a hot-dipped aluminum-silicon alloy layer on its surface to prevent the high temperature scaling during the hot stamping and corrosion during applications. In this paper, a plasma electrolytic oxidation (PEO) process was used to produce ceramic oxide coatings on aluminized UHSS and Mg with intention to further improve their corrosion resistances. A potentiodynamic polarization corrosion test was employed to evaluate general corrosion properties of the individual alloys. Galvanic corrosion of the aluminized UHSS and magnesium alloy coupling with and without PEO coatings was studied by a zero resistance ammeter (ZRA) test. It was found that the heating-cooling process simulating the hot stamping would reduce anti-corrosion properties of aluminized UHSS due to the outward iron diffusion.
Technical Paper

A Review of Human Physiological, Psychological & Human Biomechanical Factors on Perceived Thermal Comfort of Automotive Seats.

2017-03-28
2017-01-1388
Thermal comfort in automotive seating has been studied and discussed for a long time. The available research, because it is focused on the components, has not produced a model that provides insight into the human-seat system interaction. This work, which represents the beginning of an extensive research program, aims to establish the foundation for such a model. This paper will discuss the key physiological, psychological, and biomechanical factors related to perceptions of thermal comfort in automotive seats. The methodology to establish perceived thermal comfort requirements will also be presented and discussed.
Technical Paper

Use of Rigid and Deformable Child Restraint Seats in Finite Element Simulations of Frontal Crashes

2006-04-03
2006-01-1141
This research focuses on the injury potential of children seated in forward facing child restraint seats during frontal vehicle crashes. Experimental sled tests were completed in accordance to the Federal Motor Vehicle Safety Standard 213 using a Hybrid III three-year-old dummy in a five point child restraint system. A full vehicle crash test was completed in accordance to the Canadian Motor Vehicle Safety Standard 208 with the addition of a three-year-old Hybrid III crash test dummy, seated behind the passenger seat, restrained in the identical five-point child safety seat. Different child restraint finite element models were developed incorporating a subset of the apparatus used in the two experimental tests and simulated using LS-DYNA.
Technical Paper

Observations of the Relative Performance of Magnesium and Aluminum Steering Wheel Skeletons with Identical Geometry

2000-03-06
2000-01-0784
Automotive steering wheels depend on a structural skeleton made of steel, aluminum, or magnesium to be the basis for the mechanical properties of the finished part. The mechanical properties of concern are the fatigue properties and the crash performance. The purpose of this study was to evaluate the crash and the fatigue performance of a steering wheel skeleton fabricated by high pressure die casting. Two materials were used to produce two groups of wheels with identical geometry. The production part was designed, optimized and fabricated with AM50A magnesium. The production magnesium component met all of the regulatory design and performance requirements. A small sample run was made in a proprietary aluminum - magnesium alloy. The fatigue and crash properties were evaluated empirically. In fatigue testing, the aluminum skeletons displayed a significant improvement, with respect to the magnesium skeletons, in the number of cycles to failure at the loads tested.
Technical Paper

Maximized Energy Absorption and an Investigation on Practical Limitations for the Axial Cutting and Hybrid Cutting/Clamping Deformation Modes

2021-04-06
2021-01-0285
The axial cutting deformation mode is a novel alternative to progressive folding, the current state-of-the-art, where the cutting scheme exhibits more favorable mechanical performance. By splitting the extrusion into multiple evenly spaced and near-identical petals a highly consistent force response can be achieved. Maximizing the energy absorbing capacity of a sacrificial energy absorber is a fundamental design challenge in the field of crashworthiness. Generating hybrid deformation modes by simultaneously combining multiple deformation mechanisms into a single safety system is a promising technique to achieve high capacity energy dissipation. However, these systems tend to be susceptible to transitioning deformation modes (e.g. from progressive folding to global bending) since the sacrificial material is often loaded at or near its capacity.
Technical Paper

A Neural Network Approach for Predicting Collision Severity

2014-04-01
2014-01-0569
The development of a collision severity model can serve as an important tool in understanding the requirements for devising countermeasures to improve occupant safety and traffic safety. Collision type, weather conditions, and driver intoxication are some of the factors that may influence motor vehicle collisions. The objective of this study is to use artificial neural networks (ANNs) to identify the major determinants or contributors to fatal collisions based on various driver, vehicle, and environment characteristics obtained from collision data from Transport Canada. The developed model will have the capability to predict similar collision outcomes based on the variables analyzed in this study. A multilayer perceptron (MLP) neural network model with feed-forward back-propagation architecture is used to develop a generalized model for predicting collision severity. The model output, collision severity, is divided into three categories - fatal, injury, and property damage only.
Journal Article

Experimental Investigation of Axial Cutting of AA6061 Extrusions under a Tension Deformation Mode

2020-04-14
2020-01-0206
A plethora of applications in the transportation industry for both vehicular and roadside safety hardware, especially seatbelts, harnesses and restraints, rely on tensile loading to dissipate energy and minimize injury. There are disadvantages to the current state-of-the-art for these tensile energy absorbers, including erratic force-displacement responses and low tensile force efficiencies (TFE). Axial cutting was extensively demonstrated by researchers at the University of Windsor to maintain a stable reaction force, although exclusively under compressive loading. A novel apparatus was investigated in this study which utilized axial cutting under a tensile loading condition to absorb energy. A parametric scope was chosen to include circular AA6061 extrusions in both T4 and T6 temper conditions with an outer diameter of 63.5 mm and wall thickness of 3.18 mm.
Technical Paper

An Experimental Method to Study the Sensitivity of Transmission Laser Welding of Plastic Parts to Interfacial Gaps

2009-04-20
2009-01-1298
Hollow polymer-based automotive components cannot, in general, be directly injection molded because they cannot be ejected from the mold. The common practice is to injection mold two or more parts, and then join these together with a welding process. Of the many joining process available, laser welding has an advantage in geometric design freedom. The laser weld joints are also generally stronger than those of vibration welds because the weld joints are located in the walls rather than on external flanges. Eliminating the external flanges also makes the part more compact. In transmission laser welding processes, the laser beam passes through a transparent part to its interface with an opaque part. The beam energy is absorbed near the interface in the opaque part, and heat flows back across to the transparent half to make the weld pool. So successful laser welds are possible only when there is a continuous interfacial fit between the parts.
Technical Paper

Art Meets Automotive: Design of a Curve-Adaptive Origami Gripper for Handling Textiles on Non-Planar Mold Surfaces

2024-04-09
2024-01-2575
The handling of flexible components creates a unique problem set for pick and place automation within automotive production processes. Fabrics and woven textiles are examples of flexible components used in car interiors, for air bags, as liners and in carbon-fiber layups. These textiles differ greatly in geometry, featuring complex shapes and internal slits with varying material properties such as drape characteristics, crimp resistance, friction, and fiber weave. Being inherently flexible and deformable makes these materials difficult to handle with traditional rigid grippers. Current solutions employ adhesive, needle-based, and suction strategies, yet these systems prove a higher risk of leaving residue on the material, damaging the weave, or requiring complex assemblies. Pincer-style grippers are suitable for rigid components and offer strong gripping forces, yet inadvertently may damage the fabric, and introduce wrinkles / folded-over edges during the release process.
X