Refine Your Search

Topic

Search Results

Journal Article

A Methodology for Investigating and Modelling Laser Clad Bead Geometry and Process Parameter Relationships

2014-04-01
2014-01-0737
Laser cladding is a method of material deposition through which a powdered or wire feedstock material is melted and consolidated by use of a laser to coat part of a substrate. Determining the parameters to fabricate the desired clad bead geometry for various configurations is problematic as it involves a significant investment of raw materials and time resources, and is challenging to develop a predictive model. The goal of this research is to develop an experimental methodology that minimizes the amount of data to be collected, and to develop a predictive model that is accurate, adaptable, and expandable. To develop the predictive model of the clad bead geometry, an integrated five-step approach is presented. From the experimental data, an artificial neural network model is developed along with multiple regression equations.
Journal Article

Ferritic Nitrocarburizing of SAE 1010 Plain Carbon Steel Parts

2015-04-14
2015-01-0601
Ferritic nitrocarburizing offers excellent wear, scuffing, corrosion and fatigue resistance by producing a thin compound layer and diffusion zone containing ε (Fe2-3(C, N)), γ′ (Fe4N), cementite (Fe3C) and various alloy carbides and nitrides on the material surface. It is a widely accepted surface treatment process that results in smaller distortion than carburizing and carbonitriding processes. However this smaller distortion has to be further reduced to prevent the performance issues, out of tolerance distortion and post grinding work hours/cost in an automotive component. A numerical model has been developed to calculate the nitrogen and carbon composition profiles of SAE 1010 torque converter pistons during nitrocarburizing treatment. The nitrogen composition profiles are modeled against the part thickness to predict distortion.
Journal Article

The Effect of Backing Profile on Cutting Blade Wear during High-Volume Production of Carbon Fiber-Reinforced Composites

2018-04-03
2018-01-0158
Carbon fiber sheet molding compound (SMC) is an attractive material for automotive lightweighting applications, but several issues present themselves when adapting a process developed for glass fiber composites to instead use carbon fibers. SMC is a discontinuous fiber material, so individual carbon fiber tows must be chopped into uniform rovings before being compounded with the resin matrix. Rotary chopping is one such method for producing rovings, but high wear rates are seen when cutting carbon fibers. Experiments were performed to investigate the wear progression of cutting blades during rotary carbon fiber chopping. A small rotary chopper with a polyurethane (PU) backing and thin, hardened steel blades was used to perform extended wear tests (120,000 chops, or until failure to reliably chop tows) to simulate the lifespan of blades during composite material production.
Journal Article

Plasmonic in Metallic Nanostructures – Fabrication, Characterization and Applications in Surface-Enhanced Spectroscopy

2008-04-14
2008-01-1267
We are witnessing a rapid and ongoing expansion of nanoscience, driven by potential applications in advanced materials and nanotechnology. There is a race to develop techniques that may allow controlling the size, shape of nanostructures that can allow the tuning of their optical and electronic properties. Plasmonics is a field that encompasses and profits from the optical enhancement in nanostructures that support plasmon excitations. One of these new techniques is surface-enhanced Raman scattering (SERS), commonly used for nanostructure characterization. In the present report, we present a theoretical model for plasmon excitation and electric field enhancement that help to provide an explanation for the special features observed in experimental SERS. Two sets of experimental results are discussed illustrating the make out of the signature of the plasmonics producing the optical enhancement.
Journal Article

Simulation of the Axial Cutting Deformation of AA6061-T6 Round Tubes Utilizing Eulerian and Mesh Free Finite Element Formulations

2008-04-14
2008-01-1117
Experimental and numerical studies have been completed on the deformation behaviour of round AA6061-T6 aluminum extrusions during an axial cutting deformation mode employing both curved and straight deflectors to control the bending deformation of petalled side walls. Round extrusions of length 200 mm with a nominal wall thickness of 3.175 mm and an external diameter of 50.8 mm were considered. A heat treated 4140 steel alloy cutter and deflectors, both straight and curved, were designed and manufactured for the testing considered. The four blades of the cutter had an approximate average thickness of 1.00 mm which were designed to penetrate through the round AA6061-T6 extrusions. Experimental observations illustrated high crush force efficiencies of 0.82 for the extrusions which experienced the cutting deformation mode with the deflectors. Total energy absorption during the cutting process was approximately 5.48 kJ.
Technical Paper

Active Four Wheel Brake Proportioning for Improved Performance and Safety

2008-04-14
2008-01-1224
A vehicle undergoing longitudinal or lateral accelerations experiences load transfer, dynamically changing the normal load carried by each tire. Conventional braking systems are designed only to work adequately over a large range of conditions, but often ignore the dynamic state of the tire's normal load. Fortunately, new developments in braking system hardware give designers more control over the application of braking pressures. By identifying the tires that carry increased normal load, and biasing the braking system toward those tires, total braking force can be increased. The purpose of this research is to investigate advantages of open-loop load transfer based active brake pressure distribution. By estimating the tractive ability of the tires as a function of measurable vehicle conditions, brake pressure can be applied in proportions appropriate for the current dynamic state of the vehicle, referred to as Active Brake Proportioning (ABP).
Technical Paper

Roof Strength Requirement for Vehicles Involved in Rollover Crash

2008-04-14
2008-01-0510
Rollover crash is one of the most serious safety problems for light weight vehicles. In the USA, rollover crashes account for almost one-third of all occupant fatalities in light weight vehicles. Similar statistics are found for other countries. Thus, rollover crashes have received significant attention in recent years. In the USA and Canada, automotive manufacturers are required to comply with the roof strength requirement of “1.5 times the unloaded vehicle weight” to ensure safety in rollover. NHTSA is currently considering a set of countermeasures to improve the rollover safety, where one of the proposals is to increase the roof strength limit to “2.5 times the unloaded vehicle weight”. This increased roof strength limit seemingly has been motivated based on the benchmark study of current vehicle fleet.
Technical Paper

Effect of Cooling Rates on the Microstructure Evolution and Eutectic Formation of As-cast Mg-Al-Ca Alloys

2009-04-20
2009-01-0789
A Mg-5.0wt.%Al-2.0wt.%Ca alloy (AC52) was cast at different cooling rates varying from 0.5 to 65 °C/s. The dendrites was characterized by determining the secondary dendrite arm spacing (SDAS) and the volume fraction of secondary eutectic phases with the linear intercept and point counting methods, respectively. The SDAS decreases significantly with increasing cooling rates, while the volume fraction of the eutectic phase increases from 10.8 ± 1.44 vol.% at 0.5 °C/s to 20.4 ± 1.52 vol.% at 20 °C/s. However, a further increase in cooling rate beyond 20 °C/s has limited influence on the volume fraction of eutectic phases. A large number of dispersed eutectic phases were observed in the primary α-Mg of the alloys cast at low cooling rates. Although, at the microscale, there were no dispersed eutectic phases in alloys cast at a high cooling rate of 30 °C/s, nanoscale eutectic phases were found by TEM observation.
Technical Paper

Power Management Methodologies for Fuel Cell-Battery Hybrid Vehicles

2010-04-12
2010-01-0849
The implementation of fuel cell-battery hybrid vehicles requires a supervisory control strategy that manages the power distribution between the fuel cell and the energy storage device (i.e., battery). Several advanced control methods have already been developed and published in literature. However, most control methods have been developed for different vehicle types and using different mathematical models. The performance of these power management methods have not been directly compared for the same application. This study aims at obtaining direct analytical comparisons, which will provide useful insight in selecting a power management method for fuel cell-battery hybrid vehicles.
Technical Paper

Metrics for Evaluating the Ride Handling Compromise

2010-04-12
2010-01-1139
Though the purpose of a vehicle's suspension is multi-faceted and complex, the fundamentals may be simply stated: the suspension exists to provide the occupants with a tolerable ride, while simultaneously ensuring that the tires maintain good contact with the ground. At the root of the familiar ride/handling compromise, is the problem that tuning efforts which improve either grip or handling are generally to the detriment of the other. This study seeks to set forth a clear means for examining the familiar ride/handing compromise, by first exploring the key ideas of these terms, and then by describing the development of content-rich metrics to permit a direct optimization strategy. For simplicity, the optimization problem was examined in a unilateral manner, where heave (vertical; z-axis) behaviour is examined in isolation, though the methods described herein may be extended to pitch and roll behaviour as well.
Technical Paper

Separation and Liberation Factors in Designing for Automotive Materials Recovery

2004-03-08
2004-01-0471
One critical aspect of design-for-environment efforts is to increase the effectiveness of materials recovery from end-of-life vehicles. Recovery itself depends on both the amount of material recovered and the purity of the material stream. Shredding, and screening are often used to separate recyclable materials from wastes. However, with the increasing amount of composite components, particularly those made from plastics, separation processes may be inadequate. Instead, liberation processes, which reduce the physical joints between materials, are also important. In this research, samples of ABS and PVC plastics were assembled into various configurations, ground up, and then characterized by their size distributions and degrees of liberation. Two primary fastening methods - adhesive and riveting - were used to simulate how plastic components would be actually attached together.
Technical Paper

Factors Affecting the Tensile Strength of Linear Vibration Welds of Dissimilar Nylons

2002-03-04
2002-01-0604
Three different pairs of high melting temperature and low melting temperature nylons have been welded together using three different design of experiment welding process parameter matrices. An unorthodox analysis of these has revealed that there is a general increase in strength as the total welding sliding distance of the two surfaces increases. This is not surprising. The analysis also reveals that, for a given sliding distance, the vibration amplitude should be large, which shortens the welding time. This strategy produces shorter cycle times and stronger welds, according to the data obtained in these test sets.
Technical Paper

Laser Welding of Elastomers to Polypropylene

2003-03-03
2003-01-1134
The effects of varying laser-welding parameters were studied for the welding of the thermoplastic elastomer EPDM to glass filled polypropylene. Through-thickness scanning transmission welding (contour welding) was carried out with a diode laser with a wavelength of 940 nm using various power levels up to 150W and line speeds up to 2500 mm/minute. The observable weld attributes: weld strengths, weld widths, and failure modes, have been tabulated and discussed.
Technical Paper

A Hardness Study on Laser Cladded Surfaces for a Selected Bead Overlap Conditions

2017-03-28
2017-01-0285
Laser cladding is used to coat a surface of a metal to enhance the metallurgical properties at the surface level of a substrate. For surface cladding operations, overlapping bead geometry is required. Single bead analyses do not provide a complete representation of essential properties; hence, this research focuses on overlapping conditions. The research scope targets the coaxial laser cladding process specifically for P420 stainless steel clad powder using a fiber optic laser with a 4.3 mm spot size on a low/medium carbon structural steel plate (AISI 1018). Many process parameters influence the bead geometrical shape, and it is assumed that the complex temperature distributions within the process could cause subsequent large variations in hardness values. The bead overlap configurations experiments are performed with 40%, 50% and 60% bead overlaps for a three-pass bead formation.
Technical Paper

Investigating Process Parameters and Microhardness Predictive Modeling Approaches for Single Bead 420 Stainless Steel Laser Cladding

2017-03-28
2017-01-0283
Laser cladding is a novel process of surface coating, and researchers in both academia and industry are developing additive manufacturing solutions for large, metallic components. There are many interlinked process parameters associated with laser cladding, which may have an impact on the resultant microhardness profile throughout the bead zone. A set of single bead laser cladding experiments were done using a 4 kW fiber laser coupled with a 6-axis robotic arm for 420 martensitic stainless steel powder. A design of experiments approach was taken to explore a wide range of process parameter settings. The goal of this research is to determine whether robust predictive models for hardness can be developed, and if there are predictive trends that can be employed to optimize the process settings for a given set of process parameters and microhardness requirements.
Technical Paper

Experimental Observations on the Mechanical Response of AZ31B Magnesium and AA6061-T6 Aluminum Extrusions Subjected to Compression and Cutting Modes of Deformation

2017-03-28
2017-01-0377
Cylindrical extrusions of magnesium AZ31B were subjected to quasi-static axial compression and cutting modes of deformation to study this alloy’s effectiveness as an energy absorber. For comparison, the tests were repeated using extrusions of AA6061-T6 aluminum of the same geometry. For the axial compression tests, three different end geometries were considered, namely (1) a flat cutoff, (2) a 45 degree chamfer, and (3) a square circumferential notch. AZ31B extrusions with the 45 degree chamfer produced the most repeatable and stable deformation of a progressive fracturing nature, referred to as sharding, with an average SEA of 40 kJ/kg and an average CFE of 45 %, which are nearly equal to the performance of the AA6061-T6. Both the AZ31B specimens with the flat cutoff and the circumferential notch conditions were more prone to tilt mid-test, and lead to an unstable helical fracture, which significantly reduced the SEA.
Technical Paper

General and Galvanic Corrosion Behavior of Aluminized Ultra-High Strength Steel (UHSS) and Magnesium Alloy AZ35 Altered by Plasma Electrolytic Oxidation Coating Processes

2017-03-28
2017-01-0506
Ultra-high strength steel (UHSS) and magnesium (Mg) alloy have found their importance in response to automotive strategy of light weighting. UHSS to be metal-formed by hot stamping usually has a hot-dipped aluminum-silicon alloy layer on its surface to prevent the high temperature scaling during the hot stamping and corrosion during applications. In this paper, a plasma electrolytic oxidation (PEO) process was used to produce ceramic oxide coatings on aluminized UHSS and Mg with intention to further improve their corrosion resistances. A potentiodynamic polarization corrosion test was employed to evaluate general corrosion properties of the individual alloys. Galvanic corrosion of the aluminized UHSS and magnesium alloy coupling with and without PEO coatings was studied by a zero resistance ammeter (ZRA) test. It was found that the heating-cooling process simulating the hot stamping would reduce anti-corrosion properties of aluminized UHSS due to the outward iron diffusion.
Technical Paper

Modular Design and Methods to Optimize Seat Complete Assemblies

2017-03-28
2017-01-1309
Modularity in product architecture and its significance in product development have become an important product design topics in the last few decades. Several Product Modularity definitions and methodologies were developed by many researchers; however, most of the definitions and concepts have proliferated to the extent that it is difficult to apply one universal definition for modular product architecture and in product development. Automotive seat modular strategy and key factors for consideration towards modular seat design and assemblies are the main focus of this work. The primary objectives are focused on the most “natural segmentation” of the seat elements (i.e., cushions, backs, trims, plastics, head restraints, etc.) to enable the greatest ease of final assembly and greatest flexibility for scalable feature offerings around common assembly “hard-points.”
Technical Paper

In-vehicle Speech Intelligibility for the Hearing Impaired Using Speech Intelligibility Index

2011-05-17
2011-01-1681
Individuals with hearing impairments often report hearing difficulties within the driving environment. This is an ever growing issue given the increasing population of senior aged drivers. In this study, Speech Intelligibility Index (SII) is used to predict in-vehicle speech intelligibility of individuals having common hearing impairments. The effect of hearing threshold levels obtained from audiograms and the impact of vehicle background noise measured for various vehicle operating conditions, road surface types and talker and listener configurations are investigated. This is done by using measured and user-defined speech spectra as described by ANSI S3.5-1997 (Methods for Calculation of the Speech Intelligibility Index). The results demonstrate poor speech intelligibility for most situations considered and provide evidence for the need to improve automotive interior sound quality in terms of speech intelligibility for hearing impaired drivers including aged drivers.
Technical Paper

Wear and Corrosion Behaviours of PEA Alumina Coatings on Gray Cast Iron

2022-03-29
2022-01-0329
Alumina (Al2O3) thin film coatings are applied on Al alloys using Plasma Electrolytic Oxidation (PEO) method to reduce the wear and corrosion problems. Plasma Electrolytic Aluminating (PEA) is a technique which could generate Alumina coatings on cast iron, mild steel and copper alloys. In this study, the aim is to explore the anti-wear and anti-corrosion behaviours of PEA Alumina coatings on gray cast iron. The dry sliding tribology test data was obtained from Pin-on-Disk (POD) tests against SAE 52100 steel and Tungsten Carbide (WC) counterfaces. Comparing with the PEO Alumina coatings, the PEA Alumina coating has much lower Coefficient of Friction (COF) and less wear. The microstructure, chemical composition and phase composition of this coating were investigated with Scanning Electron Microscope (SEM), Energy-Dispersive X-Ray Spectroscopy (EDX) and X-Ray Diffraction (XRD), respectively. There was FeO (or FeAl2O4) found on the PEA Alumina coating.
X