Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Diesel EGR Fuel Reformer Improvement with Flow Reversal and Central Fueling

2008-06-23
2008-01-1607
Empirical work has been conducted with an EGR fuel reformer configured in a flow reversal and central fueling embedment to improve the fuel dispersion quality and the reforming energy efficiency. Comprehensive comparison analyses are made between the unidirectional flow and the periodic reversal flow embodiments of similar substrate size and properties; and between the inlet and central heating schemes. With a unidirectional EGR reformer, a large amount of supplemental heating is commonly required prior to reforming. The central-fueling and flow-reversal embedment in this study is shown to significantly reduce the supplemental heating energy. The EGR cooler loading for the two strategies is also analyzed. One-dimensional modeling analyses are conducted to evaluate the fuel delivery strategies and temperature profiles of the reformer at various reforming gas flow rates and engine-out exhaust temperatures and compositions.
Technical Paper

Real-time Heat Release Analysis for Model-based Control of Diesel Combustion

2008-04-14
2008-01-1000
A number of cylinder-pressure derived parameters including the crank angles of maximum pressure, maximum rate of pressure rise, and 50% heat released are considered as among the desired feedback for cycle-by-cycle adaptive control of diesel combustion. For real-time computation of these parameters, the heat release analyses based on the first law of thermodynamics are used. This paper intends to identify the operating regions where the simplified heat release approach provides sufficient accuracy for control applications and also highlights those regions where its use can lead to significant errors in the calculated parameters. The effects of the cylinder charge-to-wall heat transfer and the temperature dependence of the specific heat ratio on the model performance are reported. A new computationally efficient algorithm for estimating the crank angle of 50% heat released with adequate accuracy is proposed for computation in real-time.
X