Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Flexible Anti-Vibration Stability Cab Mount System for Commercial Vehicles

2020-04-14
2020-01-1087
Present day truck cab suspension comprises fully floating linkage type cab suspension to facilitate ride comfort. Fully floating cab has certain limitations in terms of stability of cab in dynamic articulations during vehicle running especially in off-road terrain applications. Presence on linkages leads to more wear and tear of joints and bushes which will in turn provide detrimental effect on vibration levels of cab that affects ride comfort for occupants. There is a dire need to develop a system that provides improvement in lateral and vertical stability of cab without compromising ride comfort of occupants. Durability of the product also to be met till life of vehicle. Anti-Vibration Stability Cab Mount is an unsymmetrical mount designed by compounding of elastomeric(rubber) metal bonded outer sleeves sandwiched between multistage inner mount bonded on aluminum casing. Cabin front supports are hinged to mount along with housing providing proper alignment to cab after assembly.
Technical Paper

Predication & Correlation of Bearing Preload with Rotational Torque in Wheel End Bearing System

2020-04-14
2020-01-0951
Wheel end bearing is one of the critical components of the vehicle as it shares the loads & support wheel rotation simultaneously. In wheel end, taper roller bearings are used. It helps to withstand both vertical & lateral loads imparted during cornering. Taper roller bearings are used in pair of two so that overall impact of lateral forces during straight running would be nullified. In wheel end bearing systems bearings are kept at distance w.r.t to each other based on position of load line, sharing the total portion of load accordingly. Life of bearings is dependent on whether the bearings are operating in play or preload. This paper focuses on various aspects of bearings life & how it varies with respect to Play & Preload. Also a methodology is developed to measure the overall preload of bearing system. In second stage a methodology is developed which gives an indirect method to measure the bearing preload in terms of wheel end torque to rotate.
Technical Paper

New Virtual Methodology for Analysis of Vehicle Cabin Using 1-D Elements

2016-02-01
2016-28-0240
The cabin or cab is an enclosed space where the driver and co-driver are seated. Structural parameters such as modal and stiffness characteristics are of key importance for its durability study and driver’s comfort. The desired strength and stiffness value of the cabin have to be met at the development phase itself. In developing new cabin models numerical simulations are used for estimating vehicle performance to reduce the development cycle. But, the conventional method of modeling the cabin using 2-d elements and performing subsequent iteration steps to arrive at the desired stiffness and strength value will be cumbersome and time consuming. Thus, a methodology of FE modeling of the truck cabin using 1-D elements has been proposed in this paper which will reduce the analysis time of successive iterations. For this purpose an existing proven driver’s cabin is modeled using 1-D elements.
Technical Paper

Ride-Comfort Analysis for Commercial Truck Using MATLAB Simulink

2019-11-21
2019-28-2428
Ride Comfort forms a core design aspect for suspension and is to be considered as primary requirement for vehicle performance in terms of drivability and uptime of passenger. Maintaining a balance between ride comfort and handling poses a major challenge to finalize the suspension specifications. The objective of this project it to perform ride- comfort analysis for a commercial truck using MATLAB Simulink. First, benchmarking was carried out on a 4x2 commercial truck and the physical parameters were obtained. Further, a mathematical model is developed using MATLAB Simulink R2015a and acceleration- time data is collected. An experimentation was carried out on the truck at speeds of 20 kmph, 30 kmph, 40 kmph and 50 kmph over a single hump to obtain actual acceleration time domain data. The model is then correlated with actual test over a single hump. This is followed by running the vehicle on Class A, B & C road profiles to account for random vibrations.
Journal Article

Improvement of Rear Seat Vibrations of Passenger Bus by Tuning Damper Characteristics

2021-09-22
2021-26-0075
Passenger vehicles are used as one of the frequently used and versatile mode of transport. Commercial buses cater to short to long distance travel for city as well as highway applications. Thus, passenger ride comfort becomes paramount for the salability of the vehicle. Generally, it is observed that the rear seat experiences the worst ride comfort characteristics due to rear overhang and pitching characteristics of buses. Therefore the objective of this project is to improve the rear seat vibrations of passenger bus by tuning damper characteristics. Shock absorbers, being a low cost and easily interchangeable component is tuned first before optimizing other suspension parameters. The methodology is as follows: first, a 4 degree of freedom mathematical model is created on MATLAB Simulink R2015a environment. Time domain data is obtained by road load data analysis and used as an input for the mathematical model.
X