Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Design and Optimization of Web Fillets for Commercial Vehicle Crankshaft for Improving SCF and Theoretically Correlated

2016-04-05
2016-01-1342
Crankshaft is one of the critical components of an engine (5C: cylinder head, connecting rod, crankshaft, camshaft and cylinder block). It is subjected to repetitive and dynamic loads due to cyclic operation of an engine and inertia forces. Due to uneven mass distribution, failure zones occur near fillets and holes in journal locations during operation of the engine. Hence, this topic was chosen because of increasing interest in higher payloads, lower weight, higher efficiency and shorter load cycles in crankshaft equipment. Calculation of Crankshaft strength consists initially in determining the nominal alternating bending and nominal alternating torsional stresses, which multiplied by the appropriate SCF (Stress Concentration Factor), result in an equivalent alternating stress. This equivalent alternating stress is then compared with the fatigue strength of the selected crankshaft material. This comparison will show whether or not the crankshaft concerned is dimensioned adequately.
Technical Paper

FEA Based Durability Evaluation of HD Tipper Chassis and Cab Through Correlated Transient and Fatigue Analysis

2011-01-19
2011-26-0013
Durability evaluation and Fatigue Life estimation for commercial vehicle Chassis and Cab is an important milestone during product design and development. Commonly used methods like endurance testing of vehicles on field, accelerated testing on four-posters or test tracks are time consuming and costly. On the other hand, virtual methods for durability evaluation give useful information early in design cycle and save considerable time and cost. They give flexibility to evaluate multiple design options and accommodate design changes early in product development cycle. Virtual testing methods commonly used in industry for durability evaluation of truck Chassis and Cab are combination of Multi-body Simulation (in software like Adams) and Fatigue Life estimation (in software like FEMFAT). These MBS models for truck are rigid or partly flexible and the simulation run-time increases drastically with increase in number of flexible parts in model.
Technical Paper

Design and Development of Active On-Board Alcohol Detection System with Safety Features for Commercial Vehicles

2018-04-03
2018-01-0602
Drink & drive has caused the increased rate of commercial vehicle accidents in the world due to the slow response to judgment and reasoning. According to research study 70% accidents are happened due to drunk & drive, it causes loss of human life and economic damage. Research has proven that drunk drivers exhibit aggressive driving behavior and apply more force during braking. While public health awareness and legal restrictions can assist in educating and discouraging people from drunk & drive, a more fool-proof method is not available in the market for commercial vehicles. Currently, a low cost, fail-safe onboard alcohol detection, and vehicle safety system is the need of the hour. This paper deals with the design & development of a low cost active onboard breath alcohol detection system and it’s on vehicle validation. Further, it explains the type of alcohol detection sensor used, controller design, logic programming and system packaging.
Technical Paper

Optimization of Front End Cooling Module for Commercial Vehicle Using CFD Approach

2013-01-09
2013-26-0044
Assessment of cooling performance in the design stage of vehicle allows a reduction in the number of needed prototypes and reduces the overall design cycle time. Frontend cooling and thermal management play an essential role in the early stages of commercial vehicle design. Sufficient airflow needs to be available for adequate cooling of the under-hood components. The amount of air mass flow depends on the under-hood geometry details, positioning and size of the grilles, fan operation and the positioning of the other components. Thermal performance depends on the selection of heat exchanger. This paper describes the effects of several design actions on engine cooling performance of a commercial vehicle with the help of Computational Fluid Dynamics (CFD) simulation tool Fluent™. Front of vehicle design is captured in detailed FE model, considering front bumper, grille, cabin, cargo and surrounding under-hood and underbody components.
Technical Paper

Development of Cylinder Block and Cylinder Head of Four Valve/Cylinder OHV Engine for Future High Performance and Durability Needs

2013-01-09
2013-26-0130
In the growing automobile world, every commercial vehicle manufacturer upgrades their product from their existing product to meet world market demand for high power engine with high torque, most fuel efficient, BS-IV and BS-V emission norms and less cost. In an Engine cylinder block and cylinder head are among the critical parts need to be modified to upgrade the existing engine platform. The VE4101 Engine is a massive 3.8 l 4 Cyl 16 valve engine based on the E483 4 cyl 8 valve engine, which is currently being mass produced in VECV, India. This engine cylinder block and cylinder head are designed with key features such as capable for high peak firing pressure, rigid load structure, curvy envelope and ribs to reduce NVH, light weight 2 split top box manufacturing method. Key strategy is used such as less capital investment in purchasing machines, no/less alteration in current machining and assembly line.
Technical Paper

Design and Development of Hybrid Single Rod Gear Shift Lever (SRGSL) System With Extra Degree of Freedom

2018-04-03
2018-01-1298
Manual Gear shifting mechanism is a customer touch point in vehicle driving conditions and it is a frequently used functional part of the vehicle. Inherent challenges exist to develop a gear shifting system that achieves better comfort shifting gears in manual transmissions, i.e. gear shift levers should be comfortable, efficient and reliable. There are several traditional concepts available for designing a mechanical interface for gear shift system like cable GSL (Gear Shift Linkages), mechanical GSL, engine mounted SRGSL (single rod gear shift linkages), directly transmission mounted GSL. All are having pros and cons over another. A unique attempt is made to provide an efficient single rod type gear actuation system for commercial vehicle where one end is directly mounted on the cowl floor of the bus/Truck and another end is connected to transmission lever.
Technical Paper

Background and Technology Approach for Development and Testing of Auto-Tire Inflation System for Reducing Tire Wear in Commercial Vehicle

2018-04-03
2018-01-1341
The reduction of tire wear in vehicle is one of the major challenges for engineers. Under-inflated tire can cause reduction in tire life along with decrease in driving stability of vehicle. Efforts have been taken to develop a low-cost auto-tire inflation system integrated in vehicle for reduction in tire wear as well as to avoid periodic checks of tire pressure. This paper deals with the technology and design approach required in the development of auto-tire inflation system for commercial vehicle. This system should have the fundamental role of not only monitoring the tire pressure but also inflating the tire to the recommended level of pressure whenever the pressure is reduced below the recommended level. Different approaches have been worked out for integration of system on vehicle with least modification in existing design.
Technical Paper

Structural Non-linear Topology Optimization of Transmission Housing and Its Experimental Verification

2015-03-30
2015-01-0098
Advanced Non-linear topology optimization methods have been addressed as the most promising techniques for light weight and performance design of Powertrain structures. The theoretical achievements are obtained both mechanically and mathematically. Nowadays, the great challenge lies in solving more complicated engineering design problems with multidisciplinary objectives or complex structural systems. The purpose of this paper is to provide a forum to present new developments in structural Non-linear topology optimization. The advantage of the proposed method is that structural optimization on irregular design domains can be carried out easily. Furthermore, this method integrates the stress analysis and the boundary evolution within the framework of finite element methods. In this paper, mainly focused on the Commercial Vehicles Powertrain component i.e. Transmission Housing.
X