Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Influence of Various Parameters of Turning Low Carbon Steel with M2 HSS Tool Using Minimum Quantity Lubrication

2022-12-23
2022-28-0533
Turning is a widely used manufacturing process in mechanical machining industries, while the cost associated with this process is high due to the cost involved in changing tools or tool regrinding. All the parameters of turning, like feed rate, cutting speed, and depth of cut, substantially impact the tool wear, which subsequently reduces tool life. Cooling methods like flooding, Minimum Quantity Lubrication (MQL), etc., are incorporated to minimise these effects on the tool and workpiece interface. When using these cooling techniques, the process parameters involved play vital roles in increasing the effectiveness. This paper focuses on the effects of machining parameters on the tool and the workpiece quality. Experiments were conducted to study the impact of various input parameters of the turning process on the tool tip temperature, cutting forces, and tool wear, ultimately affecting the tool's life.
Technical Paper

Investigation of Natural Fiber Composite in EMI Shielding under the Influence of Hematite and Rice Husk Ash Filler

2022-12-23
2022-28-0588
The increased use of electronic systems has become a severe concern for electromagnetic pollution, leading to the development of materials to reduce electromagnetic interference (EMI). The present study investigated the EMI-shielding effectiveness (EMI-SE) of flax fiber polymer composite (FFC) in the available free space method by varying the wt.% of Rice husk ash (RHA) and hematite. The flax fiber was coated with the dip coating technique, and the coated fibers were used for preparing FFC by hand layup. The EMI-SE was measured at 32-33.5 dB in the X-band frequency range (8-12 GHz). As the cost is low and can be mass-produced, results show that the developed FFC are suitable for electric vehicle applications specifically to shield Electronic control units (ECU), where the interference effect needs to be reduced.
X