Refine Your Search

Topic

Author

Search Results

Technical Paper

Lithium-Ion Battery Cell Modeling with Experiments for Battery Pack Design

2020-04-14
2020-01-1185
Lithium-ion polymer battery has been widely used for vehicle onboard electric energy storage ranging from 12V SLI (Starting, Lighting, and Ignition), 48V mild hybrid electric, to 300V battery electric vehicle. Formulation on cell parameters acquired from minimum numbers of experiments, the modeling and simulation could be an effective approach in predicting battery performance, thermal effectiveness, and degradation. This paper describes the modeling, simulation, and validation of Lithium-Nickel-Manganese-Cobalt-Oxide (LiNiMnCoO2) based cell with 3.6V nominal voltage and 20Ah capacity. Constant current 20A, 40A, 60A, and 80A discharge tests are conducted in the computer-controlled cycler and temperature chamber. Discharging voltage curves and cell surface temperature distributions are recorded in each discharging test. A three-dimensional cell model is constructed in the COMSOL multi-physics platform based on the cell parameters.
Technical Paper

Step by Step Conversion of ICE Motorcycle to a BEV Configuration

2020-04-14
2020-01-1436
With the mass movement toward electrification and renewable technologies, the scope of innovation of electrification has gone beyond the automotive industry into areas such as electric motorcycle applications. This paper provides a discussion of the methodology and complexities of converting an internal combustion motorcycle to an electric motorcycle. In developing this methodology, performance goals including, speed limits, range, weight, charge times, as well as riding styles will be examined and discussed. Based on the goals of this paper, parts capable of reaching the performance targets are selected accordingly. Documentation of the build process will be presented along with the constraints, pitfalls, and difficulties associated with the process of the project. The step-by-step process that is developed can be used as a guideline for future build and should be used as necessary.
Journal Article

An Exploration of Jute-Polyester Composite for Vehicle Head Impact Safety Countermeasures

2018-04-03
2018-01-0844
Natural fiber-reinforced composites are currently gaining increasing attention as potential substitutes to pervasive synthetic fiber-reinforced composites, particularly glass fiber-reinforced plastics (GFRP). The advantages of the former category of composites include (a) being conducive to occupational health and safety during fabrication of parts as well as handling as compared to GFRP, (b) economy especially when compared to carbon fiber-reinforced composites (CFRC), (c) biodegradability of fibers, and (d) aesthetic appeal. Jute fibers are especially relevant in this context as jute fabric has a consistent supply base with reliable mechanical properties. Recent studies have shown that components such as tubes and plates made of jute-polyester (JP) composites can have competitive performance under impact loading when compared with similar GFRP-based structures.
Technical Paper

Intelligent Auxiliary Battery Control - A Connected Approach

2021-09-21
2021-01-1248
As vehicles are getting electrified and more intelligent, the energy consumption of the auxiliary system increases rapidly. The auxiliary battery acts as the backbone of the system to support the proper operation of the vehicle. It is important to ensure the auxiliary battery has enough energy to meet the basic loads regardless the vehicle is in park or running. However, the existing methods only focus on auxiliary energy management when the vehicle is in a dynamic event. To fulfill the gap, we propose an intelligent strategy that detects the low state of charge (SOC) condition, temporarily turns down the auxiliary loads based on their priorities and charges the auxiliary battery at the maximum efficiency of the auxiliary power unit. In addition, the proposed strategy allows the vehicle to get the park duration update and make intelligent decisions on charging the auxiliary battery.
Journal Article

Transient Fluid Flow and Heat Transfer in the EGR Cooler

2008-04-14
2008-01-0956
EGR is a proven technology used to reduce NOx formation in both compression and spark ignition engines by reducing the combustion temperature. In order to further increase its efficiency the recirculated gases are subjected to cooling. However, this leads to a higher load on the cooling system of the engine, thus requiring a larger radiator. In the case of turbocharged engines the large variations of the pressures, especially in the exhaust manifold, produce a highly pulsating EGR flow leading to non-steady-state heat transfer in the cooler. The current research presents a method of determining the pulsating flow field and the instantaneous heat transfer in the EGR heat exchanger. The processes are simulated using the CFD code FIRE (AVL) and the results are subjected to validation by comparison with the experimental data obtained on a 2.5 liter, four cylinder, common rail and turbocharged diesel engine.
Journal Article

The Combined Effect of HCHO and C2H4 Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2011-04-12
2011-01-1392
Misfiring or partial combustion during diesel engine operation results in the production of partial oxidation products such as ethylene (C₂H₄), carbon monoxide and aldehydes, in particular formaldehyde (HCHO). These compounds remain in the cylinder as residual gases to participate in the following engine cycle. Carbon monoxide and formaldehyde have been shown to exhibit a dual nature, retarding ignition in one temperature regime, yet decreasing ignition delay periods of hydrocarbon mixtures as temperatures exceed 1000°K. Largely unknown is the synergistic effects of such species. In this work, varying amounts of C₂H₄ and HCHO are added to the intake air of a naturally aspirated optical diesel engine and their combined effect on autoignition and subsequent combustion is examined. To observe the effect of these dopants on the low-temperature heat release (LTHR), ultraviolet chemiluminescent images are recorded using intensified CCD cameras.
Journal Article

An Innovative Modeling Approach to Thermal Management using Variable Fidelity Flow Network Models Imbedded in a 3D Analysis

2011-04-12
2011-01-1048
Speed and accuracy are the critical needs in software for the modeling and simulation of vehicle cooling systems. Currently, there are two approaches used in commercially available thermal analysis software packages: 1) detailed modeling using complex and sophisticated three-dimensional (3D) heat transfer and computational fluid dynamics, and 2) rough modeling using one-dimensional (1D) simplistic network solvers (flow and thermal) for quick prediction of flow and thermal fields. The first approach offers accuracy at the cost of speed, while the second approach provides the simulation speed, sacrificing accuracy and can possibly lead to oversimplification. Therefore, the analyst is often forced to make a choice between the two approaches, or find a way to link or couple the two methods. The linking between one-dimensional and three-dimensional models using separate software packages has been attempted and successfully accomplished for a number of years.
Journal Article

Battery Charge Balance and Correction Issues in Hybrid Electric Vehicles for Individual Phases of Certification Dynamometer Driving Cycles as Used in EPA Fuel Economy Label Calculations

2012-04-16
2012-01-1006
This study undertakes an investigation of the effect of battery charge balance in hybrid electric vehicles (HEVs) on EPA fuel economy label values. EPA's updated method was fully implemented in 2011 and uses equations which weight the contributions of fuel consumption results from multiple dynamometer tests to synthesize city and highway estimates that reflect average U.S. driving patterns. For the US06 and UDDS cycles, the test results used in the computation come from individual phases within the overall certification driving cycles. This methodology causes additional complexities for hybrid vehicles, because although they are required to be charge-balanced over the course of a full drive cycle, they may have net charge or discharge within the individual phases. As a result, the fuel consumption value used in the label value calculation can be skewed.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Journal Article

Validation of Event Data Recorders in Side-Impact Crash Tests

2014-04-01
2014-01-0503
This study evaluated the accuracy of 75 Event Data Recorders (EDRs) extracted from model year 2010-2012 Chrysler, Ford, General Motors, Honda, Mazda, and Toyota vehicles subjected to side-impact moving deformable barrier crash tests. The test report and vehicle-mounted accelerometers provided reference values to assess the EDR reported change in lateral velocity (delta-v), seatbelt buckle status, and airbag deployment status. Our results show that EDRs underreported the reference lateral delta-v in the vast majority of cases, mimicking the errors and conclusions found in some longitudinal EDR accuracy studies. For maximum lateral delta-v, the average arithmetic error was −3.59 kph (−13.8%) and the average absolute error was 4.05 kph (15.9%). All EDR reports that recorded a seatbelt buckle status data element correctly recorded the buckle status at both the driver and right front passenger locations.
Journal Article

Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

2015-04-14
2015-01-0806
This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cotton seed biodiesel while assessing the engine's multi-fuel capability. Millions of tons of cotton seeds are available in the south of the US every year and approximately 10% of oil contained in the seeds can be extracted and transesterified. An investigation of combustion, emissions, and efficiency was performed using mass ratios of 20-50% cotton seed biodiesel (CS20 and CS50) in ultra-low sulfur diesel #2 (ULSD#2). Each investigation was run at 2400 rpm with loads of 4.2 - 6.3 IMEP and compared to the reference fuel ULDS#2. The ignition delay ranged in a narrow interval of 0.8-0.97ms across the blends and the heat release rate showed comparable values and trends for all fuel blends. The maximum volume averaged cylinder temperature increased by approximately 100K with each increase in 1 bar IMEP load but the maximum remained constants across the blends.
Technical Paper

Biomechanical Investigation of Thoracolumbar Spine Fractures in Indianapolis-type Racing Car Drivers during Frontal Impacts

2006-12-05
2006-01-3633
The purpose of this study is to provide an understanding of driver kinematics, injury mechanisms and spinal loads causing thoracolumbar spinal fractures in Indianapolis-type racing car drivers. Crash reports from 1996 to 2006, showed a total of forty spine fracture incidents with the thoracolumbar region being the most frequently injured (n=15). Seven of the thoracolumbar fracture cases occurred in the frontal direction and were a higher injury severity as compared to rear impact cases. The present study focuses on thoracolumbar spine fractures in Indianapolis-type racing car drivers during frontal impacts and was performed using driver medical records, crash reports, video, still photographic images, chassis accelerations from on-board data recorders and the analysis tool MADYMO to simulate crashes. A 50th percentile, male, Hybrid III dummy model was used to represent the driver.
Technical Paper

Sensitivity of Preferred Driving Postures and Determination of Core Seat Track Adjustment Ranges

2007-06-12
2007-01-2471
With advances in virtual prototyping, accurate digital modeling of driving posture is regarded as a fundamental step in the design of ergonomic driver-seat-cabin systems. Extensive work on driving postures has been carried out focusing on the measurement and prediction of driving postures and the determination of comfortable joint angle ranges. However, studies on postural sensitivity are scarce. The current study investigated whether a driver-selected posture actually represents the most preferred one, by comparing the former with ratings of postures selected at 20 predefined places around the original hip joint center (HJC). An experiment was undertaken in a lab setting, using two distinctive driving package geometries: one for a sedan and the other for an SUV. The 20 postural ratings were compared with that of the initial user-selected position.
Technical Paper

A Simplified Battery Model for Hybrid Vehicle Technology Assessment

2007-04-16
2007-01-0301
The objective of this work is to provide a relatively simple battery energy storage and loss model that can be used for technology screening and design/sizing studies of hybrid electric vehicle powertrains. The model dynamic input requires only power demand from the battery terminals (either charging or discharging), and outputs internal battery losses, state-of-charge (SOC), and pack temperature. Measured data from a vehicle validates the model, which achieves reasonable accuracy for current levels up to 100 amps for the size battery tested. At higher current levels, the model tends to report a higher current than what is needed to create the same power level shown through the measured data. Therefore, this battery model is suitable for evaluating hybrid vehicle technology and energy use for part load drive cycles.
Technical Paper

Lower Temperature Limits for Cold Starting of Diesel Engine with a Common Rail Fuel Injection System

2007-04-16
2007-01-0934
One of the most challenging problems in diesel engines is to reduce unburned HC emissions that appear as (white smoke) during cold starting. In this paper the research is carried out on a 4-cylinder diesel engine with a common rail fuel injection system, which is able to deliver multiple injections during cold start. The causes of combustion failure at lower temperature limits are investigated theoretically by considering the rate of heat release. The results of this clearly indicate that in addition to low cranking engine speed, heat transfer and blow-by losses at lower ambient temperatures, fuel injection events would contribute to the failure of combustion. Also, combustion failure takes place when the compression temperature is lower than some critical value. Based on these results, split-main injection strategy was applied during engine cold starting and validated by experiments in a cold room at lower ambient temperatures.
Technical Paper

Engine Friction Model for Transient Operation of Turbocharged, Common Rail Diesel Engines

2007-04-16
2007-01-1460
The simulation of I.C. Engines operation, especially during transients, requires a fairly accurate estimation of the internal mechanical losses of the engine. The paper presents generic friction models for the main friction components of the engine (piston-ring-liner assembly, bearings and valve train), considering geometry of the engine parts and peculiarities of the corresponding lubrication processes. Separate models for the mechanical losses introduced by the injection system, oil and water pumps are also developed. All models are implemented as SIMULINK modules in a complex engine simulation code developed in SIMULINK and capable to simulate both steady state and transient operating conditions. Validation is achieved by comparison with measurements made on a four cylinder, common rail diesel engine, on a test bench capable to run controlled transients.
Technical Paper

Effect of Biodiesel (B-20) on Performance and Emissions in a Single Cylinder HSDI Diesel Engine

2008-04-14
2008-01-1401
The focus of this study is to determine the effect of using B-20 (a blend of 20% soybean methyl ester biodiesel and 80% ultra low sulfur diesel fuel) on the combustion process, performance and exhaust emissions in a High Speed Direct Injection (HSDI) diesel engine equipped with a common rail injection system. The engine was operated under simulated turbocharged conditions with 3-bar indicated mean effective pressure and 1500 rpm engine speed. The experiments covered a wide range of injection pressures and EGR rates. The rate of heat release trace has been analyzed in details to determine the effect of the properties of biodiesel on auto ignition and combustion processes and their impact on engine out emissions. The results and the conclusions are supported by a statistical analysis of data that provides a quantitative significance of the effects of the two fuels on engine out emissions.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

Advanced Low Temperature Combustion (ALTC): Diesel Engine Performance, Fuel Economy and Emissions

2008-04-14
2008-01-0652
The objective of this work is to develop a strategy to reduce the penalties in the diesel engine performance, fuel economy and HC and CO emissions, associated with the operation in the low temperature combustion regime. Experiments were conducted on a research high speed, single cylinder, 4-valve, small-bore direct injection diesel engine equipped with a common rail injection system under simulated turbocharged conditions, at IMEP = 3 bar and engine speed = 1500 rpm. EGR rates were varied over a wide range to cover engine operation from the conventional to the LTC regime, up to the misfiring point. The injection pressure was varied from 600 bar to 1200 bar. Injection timing was adjusted to cover three different LPPCs (Location of the Peak rate of heat release due to the Premixed Combustion fraction) at 10.5° aTDC, 5 aTDC and 2 aTDC. The swirl ratio was varied from 1.44 to 7.12. Four steps are taken to move from LTC to ALTC.
Technical Paper

Diesel Engine Diagnosis Based on Analysis of the Crankshaft's Speed Variation

1998-10-19
982540
The variation of the crankshaft's speed is influenced by the action of the cylinders and shall reflect the contribution of each cylinder to the total engine output. At the same time, the speed variation is influenced by the torsional stiffness of the cranks, the mass moments of inertia of the reciprocating mechanisms and the average speed and load of the engine. As the result, the variation of angular motion of the crankshaft is complex, each particular influence changing its importance as speed and load are modified. The diagnostic method presented in the paper is based on the analysis of the amplitudes and phases of the lowest harmonic orders of the measured speed and is capable to determine the average Indicated Mean Effective Pressure (IMEP), to detect nonuniformities in cylinder operation and to identify the faulty cylinder(s).
X