Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Wall Heat Transfer in a Multi-Link Extended Expansion SI-Engine

2017-09-04
2017-24-0016
The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
Technical Paper

Low-speed Boom Noise - Escalating Relevance According to CO2- Targets and High Torque Engines

2012-06-13
2012-01-1547
The increasing shift of drive operation towards efficient engine operation points at very low engine speeds demands a concerted design and tuning of engine, drive-train, assembly attachment and body to avoid annoying low speed boom noise. An additional challenge in this area of conflict is the increasing torque of modern engines at low engine speeds. As an example for a standard passenger car, the modes of operation, which may lead to low speed boom noise, are described. Setting levers along the complete chain of effect are characterised - from cylinder pressure up to the radiating surfaces of the interior. To achieve challenging NVH-targets the application of nonlinear simulation systems is indispensable, in particular in the concept phase of a vehicle. The use of multi-body simulation is presented for a concentrated NVH-optimisation of powertrain and rear axle vibration behaviour to reduce low-speed boom noise. On entire vehicle level hybrid simulation models are useful.
Technical Paper

Development of a LIF-Imaging System for Simultaneous High-Speed Visualization of Liquid Fuel and Oil Films in an Optically Accessible DISI Engine

2018-04-03
2018-01-0634
Downsizing and direct injection in modern DISI engines can lead to fuel impinging on the cylinder walls. The interaction of liquid fuel and engine oil due to fuel impinging on the cylinder wall causes problems in both lubrication and combustion. To analyze this issue with temporal and spatial resolution, we developed a laser-induced fluorescence (LIF) system for simultaneous kHz-rate imaging of fuel and oil films on the cylinder wall. Engine oil was doped with traces of the laser dye pyrromethene 567, which fluoresces red after excitation by 532 nm laser radiation. Simultaneously, the liquid fuel was visualized by UV fluorescence of an aromatic “tracer” in a non-fluorescent surrogate fuel excited at 266 nm. Two combinations of fuel and tracer were investigated, iso-octane and toluene as well as a multi-component surrogate and anisole. The fluorescence from oil and fuel was spectrally separated and detected by two cameras.
Technical Paper

Steady-State Experimental and Meanline Study of an Asymmetric Twin-Scroll Turbine at Full and Unequal and Partial Admission Conditions

2018-04-03
2018-01-0971
The use of twin-scroll turbocharger turbines has gained popularity in recent years. The main reason is its capability of isolating and preserving pulsating exhaust flow from engine cylinders of adjacent firing order, hence enabling more efficient pulse turbocharging. Asymmetrical twin-scroll turbines have been used to realize high pressure exhaust gas recirculation (EGR) using only one scroll while designing the other scroll for optimal scavenging. This research is based on a production asymmetrical turbocharger turbine designed for a heavy duty truck engine of Daimler AG. Even though there are number of studies on symmetrical twin entry scroll performance, a comprehensive modeling tool for asymmetrical twin-scroll turbines is yet to be found. This is particularly true for a meanline model, which is often used during the turbine preliminary design stage.
Technical Paper

Further Development of a Method to Reproduce Highly Dynamic Force Distance Based Intrusions of Vehicle Side Structure Components

2015-04-14
2015-01-1487
Structural component testing is essential for the development process to have an early knowledge of the real world behaviour of critical structural components in crash load cases. The objective of this work is to show the development for a self-sufficient structural component test bench, which can be used for different side impact crash load cases and can reflect the dynamic behaviour, which current approaches are not able. An existing basic system is used, which includes pneumatic cylinders with a controlled hydraulic brake and was developed for non-structural deformable applications only (mainly occupant assessments). The system is extended with a force-distance control. The method contains the analysis of a whole vehicle FEM simulation to develop a methodology for controlled force transmission with the pneumatic cylinders for a structural component test bench.
X