Refine Your Search

Topic

Search Results

Viewing 1 to 6 of 6
Journal Article

On Road Durability and Performance Test of Diesel Particulate Filter with BS III and BS IV Fuel for Indian Market

2016-04-05
2016-01-0959
The future emission regulation (BS V) in India is expected to create new challenges to meet the particulate matter (PM) limit for diesel cars. The upcoming emission norms will bring down the limit of PM by 80 % when compared to BS IV emission norms. The diesel particulate filter (DPF) is one of the promising technologies to achieve this emission target. The implementation of DPF system into Indian market poses challenges against fuel quality, driving cycles and warranty. Hence, it is necessary to do a detailed on-road evaluation of the DPF system with commercially available fuel under country specific drive cycles. Therefore, we conducted full vehicle durability testing with DPF system which is available in the European market to evaluate its robustness and reliability with BS III fuel (≤350ppm sulfur) & BS IV (≤50ppm sulfur) fuel under real Indian driving conditions.
Technical Paper

Utilizing Automated Report Generation and Data Acquisition Tools to Guide Fuel Cell Vehicle Fleet Operations

2008-04-14
2008-01-0462
Daimler is an industry leader in the development and deployment of fuel cell vehicles. With more than 100 fuel cell vehicles being driven worldwide at locations including the U.S., Singapore, Japan, Europe, China, and Australia, Daimler currently operates the world's largest fuel cell vehicle fleet. Each fuel cell vehicle is equipped with a powerful telematics system that records a diverse set of vehicle operation and fuel cell specific data for development purposes. Through innovative analysis methods Daimler is gaining unique insight into the technical, environmental, societal, and logistic influences impacting the future of fuel cell vehicle technology.
Technical Paper

Development of Universal Brake Test Data Exchange Format and Evaluation Standard

2010-10-10
2010-01-1698
Brake system development and testing is spread over vehicle manufacturers, system and component suppliers. Test equipment from different sources, even resulting from different technology generations, different data analysis and report tools - comprising different and sometimes undocumented algorithms - lead to a difficult exchange and analysis of test results and, at the same time, contributes to unwanted test variability. Other studies regarding the test variability brought up that only a unified and unambiguous data format will allow a meaningful and comparative evaluation of these data and only standardization will reveal the actual reasons of test variability. The text at hand illustrates that a substantial part of test variability is caused by a misinterpretation of data and/or by the application of different algorithms.
Technical Paper

Investigation on the Performance of a Mechanistic Electric Turbocharger Model for a Vehicular Fuel Cell System

2011-08-30
2011-01-1742
The electric turbocharger is a promising type of air supply unit for future automotive fuel cell drive systems. It comprises of a centrifugal compressor, a variable geometry turbine and a permanent magnet synchronous motor assembled on a single shaft. Compared to other types of vehicular fuel cell air supplies, like for example a screw or roots compressor, it needs less installation space and has lower weight while also causing less noise and vibration. This paper presents a validated mechanistic model of the electric turbocharger. The stationary compressor model is based on a set of aerodynamic loss models with surge and stone wall line prediction capability. Similarly, the stationary variable axial turbine is a detailed station based model derived from aerodynamic losses at the turbine wheel and the stator blades. The aerodynamic losses incorporated in the compressor and the turbine models are implemented under MATLAB/Simulink and show a good correlation with the experimental data.
Technical Paper

Development of Energy Management Strategies and Analysis with Standard Drive Cycles for Fuel Cell Electric Vehicles

2012-09-10
2012-01-1609
In order to reduce fuel consumption in Fuel Cell Electric Vehicles, effective distribution of power demand between Fuel Cell and Battery is required. Energy management strategies can improve fuel economy by meeting power demand efficiently. This paper explains development of various energy management strategies for Fuel Cell Electric Vehicle with Lithium Ion Battery. Drive cycles used for optimization and analysis of the strategies are New European Drive cycles (NEDC), Japanese Drive cycles (JAP1015), City Drive cycles, Highway Drive cycles (FHDS) and Federal Urban Drive cycles (FUDS). All Fuel consumption and ageing calculations are done using backward model implemented in MATLAB/SIMULINK.
Technical Paper

Using Timing Analysis for Evaluating Communication Behavior and Network Topologies in an Early Design Phase of Automotive Electric/Electronic Architectures

2009-04-20
2009-01-1379
The increasing functionality and complexity of future electric/electronic architectures requires efficient methods and tools to support design decisions, which are taken in early development phases 6. For the past four years, a holistic approach for architecture development has been established at Mercedes-Benz Cars R&D department. At its core is a seamless design flow, including the conception, the analysis and the documentation for electric/electronic architectures. One of the actual challenges in the design of electric/electronic architectures concerns communication behavior and network topologies. The increasing data exchange between the ECUs creates high requirements for the networks. With the introduction of FlexRay 21 and Ethernet the automotive network architecture become a lot more heterogeneous. Especially gateways must fulfill many new requirements to handle the strict periodic schedule of FlexRay and the partly event-triggered communication on CAN-busses 23.
X