Refine Your Search

Topic

Search Results

Viewing 1 to 8 of 8
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Fuzzy Logic Employed in an Autonomous ICC Vehicle

1995-02-01
950472
The AICC is an assisting system for controlling relative speed and distance between two vehicles in the same lane. The AICC system may be considered as an extension of a traditional cruise control, not only keeping a fixed speed of the vehicle, but correcting it also to that of a slower one ahead. The main objective of this paper is to illustrate the design of the intelligent cruise control system involving the automatic control of throttle position and braking systems. There is much evidence nowadays that fuzzy approaches to real problems, where the linear control theory fails or can't provide an available and robust design solution, are often the best alternative to more familiar schemes.
Technical Paper

Resource Management Processes for Future Vehicle Electronics

2016-04-05
2016-01-0039
New technologies such as multi-core and Ethernet provide vastly improved computing and communications capabilities. This sets the foundation for the implementation of new digital megatrends in almost all areas: driver assistance, vehicle dynamics, electrification, safety, connectivity, autonomous driving. The new challenge: We must share these computing and communication capacities among all vehicle functions and their software. For this step, we need a good resource planning to minimize the probability of late resource bottlenecks (e.g. overload, lack of real-time capability, quality loss). In this article, we summarize the status quo in the field of resource management and provide an outlook on the challenges ahead.
Technical Paper

Experimental Investigation of Droplet Formation and Droplet Sizes Behind a Side Mirror

2022-12-27
2022-01-5107
The investigation of vehicle soiling by improvement of vehicle parts to optimize the surrounding airflow is of great importance not only because of the visibility through windows and at mirrors but also the functionality of different types of sensors (camera, lidar, radars, etc.) for the driver assistance systems and especially for autonomous driving vehicles has to be guaranteed. These investigations and corresponding developments ideally take place in the early vehicle development process since later changes are difficult to apply in the vehicle production process for many reasons. Vehicle soiling is divided into foreign soiling and self-soiling with respect to the source of the soiling water, e.g., direct rain impact, swirled (dirty) water of other road users and own rotating wheels. The investigations of the soiling behavior of vehicles were performed experimentally in a wind tunnel and street tests.
Technical Paper

Customer Oriented Vehicle Dynamics Assessment for Autonomous Driving in Highway

2019-04-02
2019-01-1020
Autonomous Driving is one of the main subjects of academic research and one important trend in the automotive industry. With the advent of self-driving vehicles, the interest around trajectory planning raises, in particular when a customer-oriented analysis is performed, since more and more the carmakers will have to pay attention to the handling comfort. With that in mind, an experimental approach is proposed to assess the main characteristics of human driving and gain knowledge to enhance quality of autonomous vehicles. Focusing on overtaking maneuvers in a highway environment, four comfort indicators are proposed aiming to capture the key aspects of the chosen paths of a heterogeneous cohort. The analysis of the distribution of these indicators (peak to peak lateral acceleration, RMS lateral acceleration, Smoothness and Jerk) allowed the definition of a human drive profile.
Technical Paper

Numerical Investigations of the Dust Deposition Behavior at Light Commercial Vehicles

2023-04-24
2023-01-5022
Dry dust testing of vehicles on unpaved dust roads plays a crucial role in the development process of automotive manufacturers. One of the central aspects of the test procedure is ensuring the functionality of locking systems in the case of dust ingress and keeping the dust below a certain concentration level inside the vehicle. Another aspect is the customer comfort because of dust deposited on the surface of the car body. This also poses a safety risk to customers when the dust settles on safety-critical parts such as windshields and obstructs the driver’s view. Dust deposition on sensors is also safety critical and is becoming more important because of the increasing amount of sensors for autonomous driving. Nowadays, dust tests are conducted experimentally at dust proving grounds. To gain early insights and avoid costly physical testing, numerical simulations are considered a promising approach. Simulations of vehicle contamination by dry dust have been studied in the past.
Technical Paper

Side Mirror Soiling Investigation through the Characterization of Water Droplet Formation and Size behind a Generic Plate

2024-02-27
2024-01-5030
The improvement of vehicle soiling behavior has increasing interest over the past few years not only to satisfy customer requirements and ensure a good visibility of the surrounding traffic but also for autonomous vehicles, for which soiling investigation and improvement are even more important due to the demands of the cleanliness and induced functionality of the corresponding sensors. The main task is the improvement of the soiling behavior, i.e., reduction or even prevention of soiling of specific surfaces, for example, windows, mirrors, and sensors. This is mostly done in late stages of vehicle development and performed by experiments, e.g., wind tunnel tests, which are supplemented by simulation at an early development stage. Among other sources, the foreign soiling on the side mirror and the side window depend on the droplet detaching from the side mirror housing.
Technical Paper

Measurement of the Particle Distribution around the Tire of a Light Commercial Vehicle on Unpaved Roads

2024-03-13
2024-01-5032
Dust testing of vehicles on unpaved roads is crucial in the development process for automotive manufacturers. These tests aim to ensure the functionality of locking systems in dusty conditions, minimize dust concentration inside the vehicle, and enhance customer comfort by preventing dust accumulation on the car body. Additionally, deposition on safety-critical parts, such as windshields and sensors, can pose threats to driver vision and autonomous driving capabilities. Currently, dust tests are primarily conducted experimentally at proving grounds. In order to gain early insights and reduce the need for costly physical tests, numerical simulations are becoming a promising alternative. Although simulations of vehicle contamination by dry dust have been studied in the past, they have often lacked detailed models for tire dust resuspension. In addition, few publications address the specifics of dust deposition on vehicles, especially in areas such as door gaps and locks.
X