Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Simulation Based Analysis of Test Results

2010-04-12
2010-01-1013
The use of a newly developed approach results in a highly accurate three dimensional analysis of the occupant movement. The central point of the new method is the calculation of precise body-trajectories by fitting standard sensor-measurements to video analysis data. With the new method the accuracy of the calculated trajectories is better than 5 to 10 millimeters. These body trajectories then form the basis for a new multi-body based numerical method, which allows the three dimensional reconstruction of the dummy kinematics. In addition, forces and moments acting on every single body are determined. In principle, the body movement is reconstructed by prescribing external forces and moments to every single body requiring that it follows the measured trajectory. The newly developed approach provides additional accurate information for the development engineers. For example the motion of dummy body parts not tracked by video analysis can be determined.
Technical Paper

Precise Dummy Head Trajectories in Crash Tests based on Fusion of Optical and Electrical Data: Influence of Sensor Errors and Initial Values

2015-04-14
2015-01-1442
Precise three-dimensional dummy head trajectories during crash tests are very important for vehicle safety development. To determine precise trajectories with a standard deviation of approximately 5 millimeters, three-dimensional video analysis is an approved method. Therefore the tracked body is to be seen on at least two cameras during the whole crash term, which is often not given (e.g. head dips into the airbag). This non-continuity problem of video analysis is surmounted by numerical integration of differential un-interrupted electrical rotation and acceleration sensor signals mounted into the tracked body. Problems of this approach are unknown sensor calibration errors and unknown initial conditions, which result in trajectory deviations above 10 centimeters.
Technical Paper

Accident Analysis and Measures to Establish Compatibility

1999-03-01
1999-01-0065
The vehicle fleet differs in mass, geometry, stiffness and many other parameters. These differences are consequences of different design objectives for these vehicles and result from consumer demand, environmental and safety considerations etc. Accident research shows that the injury outcome differs in some cases, when two vehicles collide. Scientists often discuss a list of features that are assumed to be relevant for compatibility of vehicles. The relevance of these potentially important compatibility features and expected compatibility measures is examined from the perspective of accident analysis. An overview of this accident research is given and crash tests and measures are discussed that correspond with these findings.
Journal Article

Motion Tracking in Crash Test Applications with Inertial Measurement Units

2009-04-20
2009-01-0056
A new measurement system for dummy movement and chassis deformation in crash tests overcomes the restriction of blind areas in the existing photo camera observation. An inertial platform technique with micromechanical acceleration and rotation speed sensors is applied. Reconstruction of the original movement with tolerances of a few millimeters can be achieved. Various tests in automotive applications have demonstrated the performance and robustness of the system.
Technical Paper

Side Mirror Soiling Investigation through the Characterization of Water Droplet Formation and Size behind a Generic Plate

2024-02-27
2024-01-5030
The improvement of vehicle soiling behavior has increasing interest over the past few years not only to satisfy customer requirements and ensure a good visibility of the surrounding traffic but also for autonomous vehicles, for which soiling investigation and improvement are even more important due to the demands of the cleanliness and induced functionality of the corresponding sensors. The main task is the improvement of the soiling behavior, i.e., reduction or even prevention of soiling of specific surfaces, for example, windows, mirrors, and sensors. This is mostly done in late stages of vehicle development and performed by experiments, e.g., wind tunnel tests, which are supplemented by simulation at an early development stage. Among other sources, the foreign soiling on the side mirror and the side window depend on the droplet detaching from the side mirror housing.
X