Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Evaluating a Vehicle Climate Control System with a Passive Sensor Manikin coupled with a Thermal Comfort Model

2018-04-03
2018-01-0065
In a previous study, a passive sensor (HVAC) manikin coupled with a human thermal model was used to predict the thermal comfort of human test participants. The manikin was positioned among the test participants while they were collectively exposed to a mild transient heat up within a thermally asymmetric chamber. Ambient conditions were measured using the HVAC manikin’s distributed sensor system, which measures air velocity, air temperature, radiant heat flux, and relative humidity. These measurements were supplied as input to a human thermal model to predict thermophysiological response and subsequently thermal sensation and comfort. The model predictions were shown to accurately reproduce the group trends and the “time to comfort” at which a transition occurred from a state of thermal discomfort to comfort. In the current study, the effectiveness of using a coupled HVAC manikin-model system to evaluate a vehicle climate control system was investigated.
Technical Paper

Digital Human Models' Appearance Impact on Observers' Ergonomic Assessment

2005-06-14
2005-01-2722
The objective of this paper is to investigate whether different appearance modes of the digital human models (DHM or manikins) affect the observers when judging a working posture. A case where the manikin is manually assembling a battery in the boot with help of a lifting device is used in the experiment. 16 different pictures were created and presented for the subjects. All pictures have the same background, but include a unique posture and manikin appearance combination. Four postures and four manikin appearances were used. The subjects were asked to rank the pictures after ergonomic assessment based on posture of the manikin. Subjects taking part in the study were either manufacturing engineering managers, simulation engineers or ergonomists. Results show that the different appearance modes affect the ergonomic judgment. A more realistic looking manikin is rated higher than the very same posture visualized with a less natural appearance.
Technical Paper

Simulation of Vehicle Pitch in Sled Testing

1985-02-25
850098
In HYGE sled simulations of 35 mph barrier crashes with the Volvo 760 dummy kinematics and injury criteria have been different from what can be observed in barrier crashes One of the major differences between sled testing and barrier crashes is the car pitch in the barrier crashes. In order to improve the sled testing a method to simulate pitch on the sled was developed. Dummy kinematics and injury criteria from sled tests with pitch simulation have proved to be in good agreement with results from barrier crashes. The paper will give a more detailed description of vehicle pitch, the sled pitch arrangement and a comparison of dummy kinematics and injury criteria from barrier crashes and sled testing with and without pitch displacement.
Journal Article

Coupling a Passive Sensor Manikin with a Human Thermal Comfort Model to Predict Human Perception in Transient and Asymmetric Environments

2017-03-28
2017-01-0178
Passive sensor (HVAC) manikins have been developed to obtain high-resolution measurements of environmental conditions across a representative human body form. These manikins incorporate numerous sensors that measure air velocity, air temperature, radiant heat flux, and relative humidity. The effect of a vehicle’s climate control system on occupant comfort can be characterized from the data collected by an HVAC manikin. Equivalent homogeneous temperature (EHT) is often used as a first step in a cabin comfort analysis, particularly since it reduces a large data set to a single intuitive number. However, the applicability of the EHT for thermal comfort assessment is limited since it does not account for human homeostasis, i.e., that the human body actively counter-balances heat flow with the environment to maintain a constant core temperature. For this reason, a thermo-physiological human model is required to accurately simulate the body’s dynamic response to a changing environment.
X