Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Journal Article

Reduction of Soot Formation in an Optical Single-Cylinder Gasoline Direct-Injected Engine Operated in Stratified Mode Using 350 Bar Fuel Injection Pressure, Dual-Coil and High-Frequency Ignition Systems

2017-03-14
2017-01-9278
The current trend toward more fuel efficient vehicles with lower emission levels has prompted development of new combustion techniques for use in gasoline engines. Stratified combustion has been shown to be a promising approach for increasing the fuel efficiency. However, this technique is hampered by drawbacks such as increased particulate and standard emissions. This study attempts to address the issues of increased emission levels by investigating the influence of high frequency ionizing ignition systems, 350 bar fuel injection pressure and various tumble levels on particulate emissions and combustion characteristics in an optical SGDI engine operated in stratified mode on isooctane. Tests were performed at one engine load of 2.63 bar BMEP and speed of 1200 rpm. Combustion was recorded with two high speed color cameras from bottom and side views using optical filters for OH and soot luminescence.
Technical Paper

Water Injection System Application in a Mild Hybrid Powertrain

2020-04-14
2020-01-0798
The potential of 48V Mild Hybrid is promising in meeting the present and future CO2 legislations. There are various system layouts for 48V hybrid system including P0, P1, P2. In this paper, P2 architecture is used to investigate the effects of water injection benefits in a mild hybrid system. Electrification of the conventional powertrain uses the benefits of an electric drive in the low load-low speed region where the conventional SI engine is least efficient and as the load demand increases the IC Engine is used in its more efficient operating region. Engine downsizing and forced induction trend is popular in the hybrid system architecture. However, the engine efficiency is limited by combustion knocking at higher loads thus ignition retard is used to avoid knocking and fuel enrichment becomes must to operate the engine at MBT (Maximum Brake Torque) timing; in turn neutralizing the benefits of fuel savings by electrification.
Technical Paper

Location of the First Auto-Ignition Sites for Two HCCI Systems in a Direct Injection Engine

2004-03-08
2004-01-0564
To elucidate the processes controlling the auto-ignition timing and overall combustion duration in homogeneous charge compression ignition (HCCI) engines, the distribution of the auto-ignition sites, in both space and time, was studied. The auto-ignition locations were investigated using optical diagnosis of HCCI combustion, based on laser induced fluorescence (LIF) measurements of formaldehyde in an optical engine with fully variable valve actuation. This engine was operated in two different modes of HCCI. In the first, auto-ignition temperatures were reached by heating the inlet air, while in the second, residual mass from the previous combustion cycle was trapped using a negative valve overlap. The fuel was introduced directly into the combustion chamber in both approaches. To complement these experiments, 3-D numerical modeling of the gas exchange and compression stroke events was done for both HCCI-generating approaches.
Technical Paper

Direct Gasoline Injection in the Negative Valve Overlap of a Homogeneous Charge Compression Ignition Engine

2003-05-19
2003-01-1854
An engine with variable valve timing was operated in homogeneous charge compression ignition (HCCI) mode. In two sets of experiments, the fuel was introduced directly into the combustion chamber using a split injection strategy. In the first set, lambda was varied while the fuel flow was constant. The second set consisted of experiments during which the fuel flow was altered and lambda was fixed. The results were evaluated using an engine simulation code with integrated detailed-chemistry. The auto-ignition temperature of the air-fuel mixture was reached when residual mass of the previous combustion cycle was captured using a negative valve overlap and compressed together with the fresh mixture charge inducted. When a pilot fuel amount was introduced in the combustion chamber before piston TDC, during the negative valve overlap, radicals were formed as well as intermediates and combustion took place during this overlap provided the mixture was lean.
Technical Paper

Experimental Investigation of Methane Direct Injection with Stratified Charge Combustion in Optical SI Single Cylinder Engine

2016-04-05
2016-01-0797
This paper assesses methane low pressure direct injection with stratified charge in a SI engine to highlight its potential and downsides. Experiments were carried out in a spark ignited single cylinder optical engine with stratified, homogeneous lean and stoichiometric operational mode, with focus on stratified mode. A dual coil ignition system was used in stratified mode in order to achieve sufficient combustion stability. The fuel injection pressure for the methane was 18 bar. Results show that stratified combustion with methane spark ignited direct injection is possible at 18 bar fuel pressure and that the indicated specific fuel consumption in stratified mode was 28% lower compared to the stoichiometric mode. Combustion and emission spectrums during the combustion process were captured with two high-speed video cameras. Combustion images, cylinder pressure data and heat release analysis showed that there are fairly high cycle-to-cycle variations in the combustion.
Technical Paper

Evaluation of Electrically Heated Catalyst Control Strategies against a Variation of Cold Engine Start Driver Behaviour

2022-03-29
2022-01-0544
An electrically heated catalyst (EHC) in the three-way catalyst (TWC) aftertreatment system of a gasoline internal combustion engine (ICE) provides cold engine start exhaust pollutant emission reduction potential. The EHC can be started before switching on the ICE, thereby offering the possibility to pre-heat (PRH) the TWC, in the absence of exhaust flow. The EHC can also provide post engine start heat (PSH) when the heat is accompanied by exhaust mass flow over the TWC. A mixed heating strategy (MXH) comprises both PRH and PSH. All three strategies are evaluated under a range of engine start variations using an ICE-exhaust aftertreatment (EATS) simulation framework. It is driven by an engine speed-torque requested trace, with an engine-out emissions model focused on cold-start, engine heating and catalyst heating engine measures and a physics- based EATS with EHC model.
Technical Paper

Sources of Hydrocarbon Emissions from a Direct Injection Stratified Charge Spark Ignition Engine

2000-06-19
2000-01-1906
The purpose of this paper is to assess the influence of fuel properties on cycle-resolved exhaust hydrocarbons and investigate the sources of hydrocarbon (HC) emissions in a direct injection stratified charge (DISC) SI engine. The tested engine is a single cylinder version of a commercial DISC engine that uses a wall guided combustion system. The HC emissions were analyzed using both a fast flame ionization detector (Fast FID) and conventional emission measurement equipment. Three fuels were compared in the study: iso-Pentane, iso-Octane and a gasoline of Japanese specification. The measurements were conducted at part-load, where the combustion is in stratified mode. The start of injection (SOI) was altered in relation to the series calibration to vary the mixture preparation time, the time from SOI to ignition. The ignition timing was set at maximum brake torque (MBT) for each test.
Technical Paper

A Comparative Study on Knock Occurrence for Different Fuel Octane Number

2018-09-10
2018-01-1674
Combustion with knock is an abnormal phenomenon which constrains the engine performance, thermal efficiency and longevity. The advance timing of the ignition system requires it to be updated with respect to fuel octane number variation. The production series engines are calibrated by the manufacturer to run with a special fuel octane number. In the experiment, the engine was operated at different speeds, loads, spark advance timings and consumed commercial gasoline with research octane numbers (RON) 95, 97 and 100. A 1-dimensional validated engine combustion model was run in the GT-Power software to simulate the engine conditions required to define the knock envelope at the same engine operation conditions as experiment. The knock intensity investigation due to spark advance sweep shows that combustion with noise was started after a specific advance ignition timing and the audible knock occur by increasing the advance timing.
Technical Paper

Large Eddy Simulation of Stratified Combustion in Spray-guided Direct Injection Spark-ignition Engine

2018-04-03
2018-01-1420
Stratified combustion in gasoline engines constitutes a promising means of achieving higher thermal efficiency for low to medium engine loads than that achieved with combustion under standard homogeneous conditions. However, creating a charge that leads to a stable efficient low-emission stratified combustion process remains challenging. Combustion through a stratified charge depends strongly on the dynamics of the turbulent fuel-air mixing process and the flame propagation. Predictive simulation tools are required to elucidate this complex mixing and combustion process under stratified conditions. For the simulation of mixing processes, combustion models based on large-eddy turbulence modeling have typically outperformed the standard Reynolds averaged Navier-Stokes methods.
Technical Paper

Homogeneous Lean Combustion in a 2lt Gasoline Direct Injected Engine with an Enhanced Turbo Charging System

2018-09-10
2018-01-1670
In the quest for a highly efficient, low emission and affordable source of passenger car propulsion system, meeting future demands for sustainable mobility, the concept of homogeneous lean combustion (HLC) in a spark ignited (SI) multi-cylinder engine has been investigated. An attempt has been made to utilize the concept of HLC in a downsized multi-cylinder production engine producing up to 22 bar BMEP in load. The focus was to cover as much as possible of the real driving operational region, to improve fuel consumption and tailpipe emissions. A standard Volvo two litre four-cylinder gasoline direct injected engine operating on commercial 95 RON gasoline fuel was equipped with an advanced two stage turbo charger system, consisting of a variable nozzle turbine turbo high-pressure stage and a wastegate turbo low-pressure stage. The turbo system was specifically designed to meet the high demands on air mass flow when running lean on higher load and speeds.
Technical Paper

Methane Direct Injection in an Optical SI Engine - Comparison between Different Combustion Modes

2019-01-15
2019-01-0083
Natural gas, biogas, and biomethane are attractive fuels for compressed natural gas (CNG) engines because of their beneficial physical and chemical characteristics. This paper examines three combustion modes - homogeneous stoichiometric, homogeneous lean burn, and stratified combustion - in an optical single cylinder engine with a gas direct injection system operating with an injection pressure of 18 bar. The combustion process in each mode was characterized by indicated parameters, recording combustion images, and analysing combustion chemiluminescence emission spectra. Pure methane, which is the main component of CNG (up to 98%) or biomethane (> 98 %), was used as the fuel. Chemiluminescence emission spectrum analysis showed that OH* and CN* peaks appeared at their characteristic wavelengths in all three combustion modes. The peak of OH* and broadband CO2* intensities were strongly dependent on the air/fuel ratio conditions in the cylinder.
Technical Paper

A Control-Oriented Spatially Resolved Thermal Model of the Three-Way-Catalyst

2021-04-06
2021-01-0597
The three-way-catalyst (TWC) is an essential part of the exhaust aftertreatment system in spark-ignited powertrains, converting nearly all toxic emissions to harmless gasses. The TWC’s conversion efficiency is significantly temperature-dependent, and cold-starts can be the dominating source of emissions for vehicles with frequent start/stops (e.g. hybrid vehicles). In this paper we develop a thermal TWC model and calibrate it with experimental data. Due to the few number of state variables the model is well suited for fast offline simulation as well as subsequent on-line control, for instance using non-linear state-feedback or explicit MPC. Using the model could allow an on-line controller to more optimally adjust the engine ignition timing, the power in an electric catalyst pre-heater, and/or the power split ratio in a hybrid vehicle when the catalyst is not completely hot.
Journal Article

Water Injection Benefits in a 3-Cylinder Downsized SI-Engine

2019-01-15
2019-01-0034
With progressing electrification of automotive powertrains and demands to meet increasingly stringent emission regulations, a combination of an electric motor and downsized turbocharged spark-ignited engine has been recognized as a viable solution. The SI engine must be optimized, and preferentially downsized, to reduce tailpipe CO2 and other emissions. However, drives to increase BMEP (Brake Mean Effective Pressure) and compression ratio/thermal efficiency increase propensities of knocking (auto-ignition of residual unburnt charge before the propagating flame reaches it) in downsized engines. Currently, knock is mitigated by retarding the ignition timing, but this has several limitations. Another option identified in the last decade (following trials of similar technology in aircraft combustion engines) is water injection, which suppresses knocking largely by reducing local in-cylinder mixture temperatures due to its latent heat of vaporization.
X