Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Vehicle and Occupant Safety Protection CAE Simulation

2010-04-12
2010-01-1319
The objective of this research is to investigate the effect of the blast load on the vehicle and occupant and identify the sensitivity of the vehicle parameters to the blast load, therefore figure out the design solution to protect the vehicle and occupant. CAE explicit commercial code, LSDYNA, is applied in this research with adopting CONWEP method for the blast load. The LSDYNA 95th percentile Hybrid III dummy model is used for occupant simulation. Seat, seat belt, and underbody and underbody armor are interested areas in the design to meet the survivability and weight target. The results show the protection can be effectively achieved through employing the new design method in three areas mentioned above.
Technical Paper

Effect of Biodiesel and its Blends on Particulate Emissions from HSDI Diesel Engine

2010-04-12
2010-01-0798
The effect of biodiesel on the Particulate emissions is gaining significant attention particularly with the drive for the use of alternative fuels. The particulate matter (PM), especially having a diameter less than 50 nm called the Nanoparticles or Nucleation mode particles (NMPs), has been raising concerns about its effect on human health. To better understand the effect of biodiesel and its blends on particulate emissions, steady state tests were conducted on a small-bore single-cylinder high-speed direct-injection research diesel engine. The engine was fueled with Ultra-Low Sulfur Diesel (ULSD or B-00), a blend of 20% soy-derived biodiesel and 80% ULSD on volumetric basis (B-20), B-40, B-60, B-80 and 100% soy-derived biodiesel (B-100), equipped with a common rail injection system, EGR and swirl control systems at a load of 5 bar IMEP and constant engine speed of 1500 rpm.
Technical Paper

An Ultrasonic Proximity System for Automobile Collision Avoidance

1992-02-01
920393
The Ultrasonic Collision Avoidance System is designed to eliminate collisions when cars, trucks, and other vehicles are backing up. Many backup collisions result when objects are not in view or when a driver underestimates the distance to the object. The Ultrasonic Proximity System warns the driver of objects in the path and displays the distance to the object. The distance to an object is represented by a 10 segment light emitting diode (LED) bar graph. If all LED's are off, the object is more than 10 feet away. The first LED will illuminate at approximately 10 feet, and as the vehicle moves closer to the obstruction more LED's illuminate, about 1 LED per foot. If the object is closer than 1′-6″, the last LED will illuminate and an audible alarm will sound.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Dynamic Human Ankle Response to Inversion and Eversion

1993-11-01
933115
There are many mechanisms for ankle injury to front seat occupants involved in automotive impacts. This study addresses injuries to the ankle joint involving inversion or eversion, in particular at high rates of loading such as might occur in automotive accidents. Injuries included unilateral malleolar fractures and ligament tears, and talus and calcaneous avulsions. Twenty tests have been performed so far, two of them using Hybrid III lower leg and the rest using cadaveric specimens. The specimens were loaded dynamically on the bottom of the foot via a pneumatic cylinder in either an inversion or eversion direction at fixed dorsiflexion and plantarflexion angles. The applied force and accelerations have been measured as well as all the reaction forces and moments. High-speed film was used to obtain the inversiordeversion angle of the foot relative to the tibia and for following ligament stretch.
Technical Paper

The Effect of Fuel-Line Pressure Perturbation on the Spray Atomization Characteristics of Automotive Port Fuel Injectors

1995-10-01
952486
An experimental study was carried out to characterize the spray atomization process of automotive port fuel injectors retrofitted to a novel pressure modulation piezoelectric driver, which generates a pressure perturbation inside the fuel line. Unlike many other piezoelectric atomizers, this unit does not drive the nozzle directly. It has a small size and can be installed easily between regular port injector and fuel lines. There is no extra control difficulty with this system since the fuel injection rate and injection timing are controlled by the original fuel-metering valve. The global spray structures were characterized using the planar laser Mie scattering (PLMS) technique and the spray atomization processes were quantified using phase Doppler anemometry (PDA) technique.
Technical Paper

Proposed Provisional Reference Values for the Humerus for Evaluation of Injury Potential

1996-11-01
962416
A humerus provisional reference value (PRV) based on human surrogate data was developed to help evaluate upper arm injury potential. The proposed PRV is based on humerus bone bending moments generated by testing pairs of cadaver arms to fracture in three-point bending on an Instron testing machine in either lateral-medial (L-M) or anterior-posterior (A-P) loading, at 218 mm/s and 0.635 mm/s loading rates. The results were then normalized and scaled to 50th and 5th percentile sized occupants. The normalized average L-M bending moment at failure test result was 6 percent more than the normalized average A-P bending moment. The normalized average L-M shear force at failure was 23 percent higher than the normalized average A-P shear force. The faster rate of loading resulted in a higher average bending moment overall - 8 percent in the L-M and 14 percent in the A-P loading directions.
Technical Paper

Driver Eye Locations as Determined by a T.V. System

1977-02-01
770244
Drivers' eye location data was collected in three vehicle (Vega, 1973 Buick, and Chevrolet Van) and in three environments (laboratory buck, static and on-the-road) for each vehicle type. In each environment data was collected for 50 subjects who were stratified by height and sex. A specially constructed remote coordinate system in connection with T.V. cameras was used for data collection. Drivers' eye locations were found to vary as a function of vehicle type. For the Buick and Van there were differences between data collected in the laboratory buck and on-the-road. There were no differences in data collected in the static environment and on-the-road for any vehicle type.
Technical Paper

Analysis of Head and Neck Response During Side Impact

1999-03-01
1999-01-0717
Numerical analyses of head and neck response during side impact are presented in this paper. A mathematical human model for side impact simulation was developed based on previous studies of other researchers. The effects of muscular activities during severe side impact were analyzed with the use of this model. This study shows that the effect of muscular activities is significant especially if the occupant is prepared to resist the impact. This result suggests that the modeling of muscles is important for the simulation of real accident situation.
Technical Paper

Finite Element Modeling of Gross Motion of Human Cadavers in Side Impact

1994-11-01
942207
Seventeen Heidelberg type cadaveric side impact sled tests, two sled-to-sled tests, and forty-four pendulum tests have been conducted at Wayne State University, to determine human responses and tolerances in lateral collisions. This paper describes the development of a simplified finite element model of a human occupant in a side impact configuration to simulate those cadaveric experiments. The twelve ribs were modeled by shell elements. The visceral contents were modeled as an elastic solid accompanied by an array of discrete dampers. Bone condition factors were obtained after autopsy to provide material properties for the model. The major parameters used for comparison are contact forces at the level of shoulder, thorax, abdomen and pelvis, lateral accelerations of ribs 4 and 8 and of T12, thoracic compression and injury functions V*C, TTI and ASA.
X