Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Journal Article

Experimental Investigation of the Interaction of MultipleGDI Injections using Laser Diagnostics

2010-04-12
2010-01-0596
In present GDI engines, multiple injection strategies are often employed for engine cold start mixture formation. In the future, these strategies may also be used to control the combustion process, and to prevent misfiring or high emission levels. While the processes occurring during individual injections of GDI injectors have been investigated by a number of researchers, this paper concentrates on the interactions of multiple injection events. Even though multiple injection strategies are already applied in most GDI engines, the impact of the first injection event on the second injection event has not been analyzed in detail yet. Different optical measurement techniques are used in order to investigate the interaction of the two closely timed injection events, as well as the effect of dwell time and the in-cylinder conditions. The injector investigated is a GDI piezo injector with an outwardly opening needle.
Journal Article

Effects of Fuel Cell Material Properties on Water Management Using CFD Simulation and Neutron Imaging

2010-04-12
2010-01-0934
Effects of fuel cell material properties on water management were numerically investigated using Volume of Fluid (VOF) method in the FLUENT. The results show that the channel surface wettability is an important design variable for both serpentine and interdigitated flow channel configurations. In a serpentine air flow channel, hydrophilic surfaces could benefit the reactant transport to reaction sites by facilitating water transport along channel edges or on channel surfaces; however, the hydrophilic surfaces would also introduce significantly pressure drop as a penalty. For interdigitated air flow channel design, it is observable that liquid water exists only in the outlet channel; it is also observable that water distribution inside GDL is uneven due to the pressure distribution caused by interdigitated structure. An in-situ water measurement method, neutron imaging technique, was used to investigate the water behavior in a PEM fuel cell.
Journal Article

Efficient Approximate Methods for Predicting Behaviors of Steel Hat Sections Under Axial Impact Loading

2010-04-12
2010-01-1015
Hat sections made of steel are frequently encountered in automotive body structural components such as front rails. These components can absorb significant amount of impact energy during collisions thereby protecting occupants of vehicles from severe injury. In the initial phase of vehicle design, it will be prudent to incorporate the sectional details of such a component based on an engineering target such as peak load, mean load, energy absorption, or total crush, or a combination of these parameters. Such a goal can be accomplished if efficient and reliable data-based models are available for predicting the performance of a section of given geometry as alternatives to time-consuming and detailed engineering analysis typically based on the explicit finite element method.
Journal Article

Characteristics of Ion Current Signals in Compression Ignition and Spark Ignition Engines

2010-04-12
2010-01-0567
Ion current sensors have been considered for the feedback electronic control of gasoline and diesel engines and for onboard vehicles powered by both engines, while operating on their conventional cycles or on the HCCI mode. The characteristics of the ion current signal depend on the progression of the combustion process and the properties of the combustion products in each engine. There are large differences in the properties of the combustible mixture, ignition process and combustion in both engines, when they operate on their conventional cycles. In SI engines, the charge is homogeneous with an equivalence ratio close to unity, ignition is initiated by an electric spark and combustion is through a flame propagating from the spark plug into the rest of the charge.
Journal Article

Self-Regulation Minimizes Crash Risk from Attentional Effects of Cognitive Load during Auditory-Vocal Tasks

2014-04-01
2014-01-0448
This study reanalyzes the data from a recent experimental report from the University of Utah investigating the effect on driving performance of auditory-vocal secondary tasks (such as cell phone and passenger conversations, speech-to-text, and a complex artificial cognitive task). The current objective is to estimate the relative risk of crashes associated with such auditory-vocal tasks. Contrary to the Utah study's assumption of an increase in crash risk from the attentional effects of cognitive load, a deeper analysis of the Utah data shows that driver self-regulation provides an effective countermeasure that offsets possible increases in crash risk. For example, drivers self-regulated their following distances to compensate for the slight increases in brake response time while performing auditory-vocal tasks. This new finding is supported by naturalistic driving data showing that cell phone conversation does not increase crash risk above that of normal baseline driving.
Journal Article

An Unbiased Estimate of the Relative Crash Risk of Cell Phone Conversation while Driving an Automobile

2014-04-01
2014-01-0446
A key aim of research into cell phone tasks is to obtain an unbiased estimate of their relative risk (RR) for crashes. This paper re-examines five RR estimates of cell phone conversation in automobiles. The Toronto and Australian studies estimated an RR near 4, but used subjective estimates of driving and crash times. The OnStar, 100-Car, and a recent naturalistic study used objective measures of driving and crash times and estimated an RR near 1, not 4 - a major discrepancy. Analysis of data from GPS trip studies shows that people were in the car only 20% of the time on any given prior day at the same clock time they were in the car on a later day. Hence, the Toronto estimate of driving time during control windows must be reduced from 10 to 2 min.
Journal Article

A Methodology for Characterization of the Strain Rate-Dependent Behavior of PU Foam

2014-04-01
2014-01-0539
Polymeric foams are known to be sensitive to strain rate under dynamic loads. Mechanical characterization of such materials would not thus be complete without capturing the effect of strain rate on their stress-strain behaviors. Consistent data on the dynamic behavior of foam is also necessary for designing energy-absorbing countermeasures based on foam such as for vehicle occupant safety protection. Strain rates of the order of 100-500 s−1 are quite common in such design applications; strain rates of this range cannot be obtained with an ordinary UTM (universal testing machine) and a special test set-up is usually needed. In the current study, a unique approach has been suggested according to which quasi-static tests at low strain rates and low velocity drop tests at medium strain rates are utilized to arrive at an empirical relation between initial peak stress and logarithm of strain rate for a rigid closed-cell PU foam.
Journal Article

A New Technique to Determine the Burning Velocity in a Gasoline Direct Injection Engine

2014-04-01
2014-01-1176
Many approaches have been taken to determine the burning velocity in internal combustion engines. Experimentally, the burning velocity has been determined in optically accessible gasoline engines by tracking the propagation of the flame front from the spark plug to the end of the combustion chamber. These experiments are costly as they require special imaging techniques and major modifications in the engine structure. Another approach to determine the burning velocity is from 3D CFD simulation models. These models require basic information about the mechanisms of combustion which are not available for distillate fuels in addition to many assumptions that have to be made to determine the burning velocity. Such models take long periods of computational time for execution and have to be calibrated and validated through experimentation.
Journal Article

In-Cylinder Wall Temperature Influence on Unburned Hydrocarbon Emissions During Transitional Period in an Optical Engine Using a Laser-Induced Phosphorescence Technique

2014-04-01
2014-01-1373
Emissions of Unburned Hydrocarbons (UHC) from diesel engines are a particular concern during the starting process, when after-treatment devices are typically below optimal operating temperatures. Drivability in the subsequent warm-up phase is also impaired by large cyclic fluctuations in mean effective pressure (MEP). This paper discusses in-cylinder wall temperature influence on unburned hydrocarbon emissions and combustion stability during the starting and warm-up process in an optical engine. A laser-induced phosphorescence technique is used for quantitative measurements of in-cylinder wall temperatures just prior to start of injection (SOI), which are correlated to engine out UHC emission mole fractions and combustion phasing during starting sequences over a range of charge densities, at a fixed fueling rate. Squish zone cylinder wall temperature shows significant influence on engine out UHC emissions during the warm-up process.
Journal Article

On-Board Fuel Identification using Artificial Neural Networks

2014-04-01
2014-01-1345
On-board fuel identification is important to ensure engine safe operation, similar power output, fuel economy and emissions levels when different fuels are used. Real-time detection of physical and chemical properties of the fuel requires the development of identifying techniques based on a simple, non-intrusive sensor. The measured crankshaft speed signal is already available on series engine and can be utilized to estimate at least one of the essential combustion parameters such as peak pressure and its location, rate of cylinder pressure rise and start of combustion, which are an indicative of the ignition properties of the fuel. Using a dynamic model of the crankshaft numerous methods have been previously developed to identify the fuel type but all with limited applications in terms of number of cylinders and computational resources for real time control.
Journal Article

A Study into the Mechanical Behavior of Adhesively-Bonded Jute Fiber-Reinforced Composite

2015-04-14
2015-01-0729
Rapid progress in the interdisciplinary field of automotive engineering and the pressing need for an environmental friendly alternative to metal and synthetic fiber-reinforced composites for vehicle structure have triggered recent research in the field of natural fiber-based composites. Their potential advantages are attributed to their light weight, low cost and biodegradability. However, their usage in present day automotive systems is restricted due a lower magnitude range of mechanical properties and limited study in this area. In contrast to mechanical joints, the adhesively bonded joints aid in reducing stress concentration, joining of dissimilar materials, corrosion prevention, weight reduction and a smoother finish. Thus, in the present study, failure load, and mean shear stress of single lap shear and double lap shear joints as a function of joint overlap length, are evaluated using a two part epoxy adhesive made by Huntsman.
Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

2015-04-14
2015-01-1482
Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Journal Article

An Exploration of Jute-Polyester Composite for Vehicle Head Impact Safety Countermeasures

2018-04-03
2018-01-0844
Natural fiber-reinforced composites are currently gaining increasing attention as potential substitutes to pervasive synthetic fiber-reinforced composites, particularly glass fiber-reinforced plastics (GFRP). The advantages of the former category of composites include (a) being conducive to occupational health and safety during fabrication of parts as well as handling as compared to GFRP, (b) economy especially when compared to carbon fiber-reinforced composites (CFRC), (c) biodegradability of fibers, and (d) aesthetic appeal. Jute fibers are especially relevant in this context as jute fabric has a consistent supply base with reliable mechanical properties. Recent studies have shown that components such as tubes and plates made of jute-polyester (JP) composites can have competitive performance under impact loading when compared with similar GFRP-based structures.
Journal Article

HIC(d) and Its Relation With Headform Rotational Acceleration in Vehicle Upper Interior Head Impact Safety Assessment

2008-04-14
2008-01-0186
Upper interior head impact safety is an important consideration in vehicle design and is covered under FMVSS 201. This standard generally requires that HIC(d) should not exceed 1000 when a legitimate target in the upper interior of a vehicle is impacted with a featureless Hybrid III headform at a velocity of 15 mph (6.7 m/s). As HIC and therefore HIC(d) is based on translational deceleration experienced at the CG of a test headform, its applicability is often doubted in protection against injury that can be caused due to rotational acceleration of head during impact. A study is carried out here using an improved lumped parameter model (LPM) representing headform impact for cases in which moderate to significant headform rotation may be present primarily due to the geometric configuration of targets.
Journal Article

Characterization of the Near-Field Spray and Internal Flow of Single-Hole and Multi-Hole Sac Nozzles using Phase Contrast X-Ray Imaging and CFD

2011-04-12
2011-01-0681
It is well know that the internal flow field and nozzle geometry affected the spray behavior, but without high-speed microscopic visualization, it is difficult to characterize the spray structure in details. Single-hole diesel injectors have been used in fundamental spray research, while most direct-injection engines use multi-hole nozzle to tailor to the combustion chamber geometry. Recent engine trends also use smaller orifice and higher injection pressure. This paper discussed the quasi-steady near-nozzle diesel spray structures of an axisymmetric single-hole nozzle and a symmetric two-hole nozzle configuration, with a nominal nozzle size of 130 μm, and an attempt to correlate the observed structure to the internal flow structure using computational fluid dynamic (CFD) simulation. The test conditions include variation of injection pressure from 30 to 100 MPa, using both diesel and biodiesel fuels, under atmospheric condition.
Journal Article

Practical Versus RSM-Based MDO in Vehicle Body Design

2012-04-16
2012-01-0098
Multidisciplinary Design Optimization (MDO) is of great significance in the lean design of vehicles. The present work is concerned with the objective of cross-functional optimization (i.e. MDO) of automotive body. For simplicity, the main goal adopted here is minimizing the weight of the body meeting NVH and crash safety targets. The stated goal can be achieved following either of two different ways: classic response surface method (RSM) and practical MDO methodology espoused recently. Even though RSM seems to be able to find a design point which satisfies the constraints, the problem is with the time associated with running such CAE algorithms that can provide a single optimal solution for multi-disciplinary areas such as NVH and crash safety.
Journal Article

Large Eddy Simulation of GDI Single-Hole Flow and Near-Field Spray

2012-04-16
2012-01-0392
The improvement of spray atomization and penetration characteristics of GDI multi-hole injector sprays is a major component of the engine combustion developments, in order to achieve the fuel economy and emissions standards. Significant R&D efforts are directed towards optimization of the nozzle designs, in order to achieve optimum multi-objective spray characteristics. The Volume-of-Fluid Large-Eddy-Simulation (VOF-LES) of the injector internal flow and spray break-up processes offers a computational capability to aid development of a fundamental knowledge of the liquid jet breakup process. It is a unique simulation method capable of simultaneous analysis of the injector nozzle internal flow and the near-field jet breakup process. Hence it provides a powerful toll to investigate the influence of nozzle design parameters on the spray geometric and atomization features and, consequently, reduces reliance on hardware trial-and-tests for multi-objective spray optimizations.
Journal Article

Vehicle and Occupant Safety Protection CAE Simulation

2010-04-12
2010-01-1319
The objective of this research is to investigate the effect of the blast load on the vehicle and occupant and identify the sensitivity of the vehicle parameters to the blast load, therefore figure out the design solution to protect the vehicle and occupant. CAE explicit commercial code, LSDYNA, is applied in this research with adopting CONWEP method for the blast load. The LSDYNA 95th percentile Hybrid III dummy model is used for occupant simulation. Seat, seat belt, and underbody and underbody armor are interested areas in the design to meet the survivability and weight target. The results show the protection can be effectively achieved through employing the new design method in three areas mentioned above.
Journal Article

Role of Volatility in the Development of JP-8 Surrogates for Diesel Engine Application

2014-04-01
2014-01-1389
Surrogates for JP-8 have been developed in the high temperature gas phase environment of gas turbines. In diesel engines, the fuel is introduced in the liquid phase where volatility plays a major role in the formation of the combustible mixture and autoignition reactions that occur at relatively lower temperatures. In this paper, the role of volatility on the combustion of JP-8 and five different surrogate fuels was investigated in the constant volume combustion chamber of the Ignition Quality Tester (IQT). IQT is used to determine the derived cetane number (DCN) of diesel engine fuels according to ASTM D6890. The surrogate fuels were formulated such that their DCNs matched that of JP-8, but with different volatilities. Tests were conducted to investigate the effect of volatility on the autoignition and combustion characteristics of the surrogates using a detailed analysis of the rate of heat release immediately after the start of injection.
X