Refine Your Search

Topic

Author

Search Results

Journal Article

Deterioration of B20 from Compression Ignition Engine Operation

2010-10-25
2010-01-2120
Biodiesel has been widely accepted as an alternative for fossil-derived diesel fuel for use in compression ignition (CI) engines. Poor oxidative stability and cold flow properties restrict the use of biodiesel beyond current B20 blend levels (20% biodiesel in 80% ULSD) for vehicle applications. Maintaining the properties of B20 as specified by ASTM D7476-08 is important because, once out of spec, B20 may cause injector coke formation, fuel filter plugging, increased exhaust emissions, and overall loss of engine performance. While the properties of fresh B20 may be within the specifications, under engine operating and longer storage conditions B20 could deteriorate. In a diesel engine, the fuel that goes to the injector and does not enter the cylinder is recycled back to the fuel tank. The re-circulated fuel returns to the fuel tank at an elevate temperature, which can cause thermal oxidation.
Journal Article

Properties of Butanol-Biodiesel-ULSD Ternary Mixtures

2010-10-25
2010-01-2133
The use of butanol as an alternative biofuel blend component for conventional diesel fuel has been under extensive investigation. However, some fuel properties such as cetane number and lubricity fall below the accepted values as described by the ASTM D 975 diesel specifications. Blending 10% butanol with #2 ULSD decreases the cetane number by 7% (from 41.6 to 39.0). At higher butanol blend levels, i.e., 20% v/v, the cetane number decrease cannot be compensated for; even with the addition of a 2000 ppm level commercial cetane improver. The decreased cetane number, or in other words, increased ignition delay, can be attributed to the increased blend level of low cetane butanol as well as the critical physical properties for better atomization of fuels during auto ignition such as viscosity. The kinematic viscosity dropped sharply with increasing butanol blend level up to 25 % v/v, then increased with further increase of butanol blend level.
Technical Paper

Identification of Low-Frequency/Low SNR Automobile Noise Sources

2021-08-31
2021-01-1062
This paper presents experimental investigations of determining and analyzing low-frequency, low-SNR (Signal to Noise Ratio) noise sources of an automobile by using a new technology known as Sound Viewer. Such a task is typically very difficult to do especially at low or even negative SNR. The underlying principles behind the Sound Viewer technology consists of a passive SODAR (Sonic Detection And Ranging) and HELS (Helmholtz Equation Least Squares) method. The former enables one to determine the precise locations of multiple sound sources in 3D space simultaneously over the entire frequency range consistent with a measurement microphone in non-ideal environment, where there are random background noise and unknown interfering signals. The latter enables one to reconstruct all acoustic quantities such as the acoustic pressure, acoustic intensity, time-averaged acoustic power, radiation patterns, etc.
Technical Paper

Analyses of Low-Frequency Motorcycle Noise Under Both Steady-State and Transient Operating Conditions

2021-08-31
2021-01-1108
This paper presents experimental investigations of diagnosing and analyzing the low-frequency, low- SNR (Signal to Noise Ratio) noise sources of three motorcycles using a hybrid technology that consists of a passive SODAR (Sonic Detection And Ranging) and modified HELS (Helmholtz Equation Least Squares) methods. The former enables one to determine the precise locations of multiple sound sources in 3D space simultaneously over the entire frequency range that is consistent with a measurement microphone in non-ideal environment, where there are random background noise and unknown interfering signals. The latter enables one to reconstruct all acoustic quantities such as the acoustic pressure, acoustic intensity, time-averaged acoustic power, radiation patterns, and sound transmission paths through arbitrarily shaped vibrating structures.
Technical Paper

An Experimental Investigation on Aldehyde and Methane Emissions from Hydrous Ethanol and Gasoline Fueled SI Engine

2020-09-15
2020-01-2047
Use of ethanol as gasoline replacement can contribute to the reduction of nitrogen oxide (NOx) and carbon oxide (CO) emissions. Depending on ethanol production, significant reduction of greenhouse-gas emissions is possible. Concentration of certain species, such as unburned ethanol and acetaldehyde in the engine-out emissions are known to rise when ratio of ethanol to gasoline increases in the fuel. This research explores on hydrous ethanol fueled port-fuel injection (PFI) spark ignition (SI) engine emissions that contribute to photochemical formation of ozone, or so-called ozone precursors and the precursor of peroxyacetyl nitrates (PANs). The results are compared to engine operation on gasoline. Concentration obtained by FTIR gas analyzer, and mass-specific emissions of formaldehyde (HCHO), acetaldehyde (MeCHO) and methane (CH4) under two engine speed, four load and two spark advance settings are analyzed and presented.
Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

2015-04-14
2015-01-1482
Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Journal Article

An Exploration of Jute-Polyester Composite for Vehicle Head Impact Safety Countermeasures

2018-04-03
2018-01-0844
Natural fiber-reinforced composites are currently gaining increasing attention as potential substitutes to pervasive synthetic fiber-reinforced composites, particularly glass fiber-reinforced plastics (GFRP). The advantages of the former category of composites include (a) being conducive to occupational health and safety during fabrication of parts as well as handling as compared to GFRP, (b) economy especially when compared to carbon fiber-reinforced composites (CFRC), (c) biodegradability of fibers, and (d) aesthetic appeal. Jute fibers are especially relevant in this context as jute fabric has a consistent supply base with reliable mechanical properties. Recent studies have shown that components such as tubes and plates made of jute-polyester (JP) composites can have competitive performance under impact loading when compared with similar GFRP-based structures.
Technical Paper

Smart Spark Plug for Proper Combustion Timing in Gasoline Engines and Detection of Misfire and Knock

2020-04-14
2020-01-0790
Internal combustion engines are required to achieve production goals of better fuel economy, improved fuel economy and reduced emissions in order to meet the current and future stringent standards. To achieve these goals, it is essential to control the combustion process using an in-cylinder combustion sensor and a system that produces a feedback signal to the ECU. This paper presents a system based on combustion ionization that includes a newly developed smart spark plug capable of sensing the whole combustion process. A unique feature of the smart spark plug system is its ability to sense the early stages of combustion and produce a complete ion current signal that accurately identifies and can be used for the control of the start of combustion.
Technical Paper

Strategies to Gain the Loss in Power in a Military Diesel Engine Using JP-8 Instead of ULSD

2020-04-14
2020-01-0804
The Department of Defense (DOD) has adopted the use of JP-8 under the “single battlefield fuel” policy. Fuel properties of JP-8 which are different from ULSD include cetane number, density, heating value and compressibility (Bulk modulus). While JP8 has advantages compared to ULSD, related to storage, combustion and lower soot emissions, its use cause a drop in the peak power in some military diesel engines. The engines that has loss in power use the Hydraulically actuated Electronic Unit Injection (HEUI) fuel system. The paper explains in details the operation of HEUI including fuel delivery into the injector and its compression to the high injection pressure before its delivery in the combustion chamber. The effect of fuel compressibility on the volume of the fuel that is injected into the combustion chamber is explained in details.
Technical Paper

Application of Multivariate Control Chart Techniques to Identifying Nonconforming Pallets in Automotive Assembly Plants

2020-04-14
2020-01-0477
The Hotelling multivariate control chart and the sample generalized variance |S| are used to monitor the mean and dispersion of vehicle build vision data including the pallet information to identify the non-conforming pallets that are used in body shops of FCA US LLC assembly plants. An iterative procedure and the Gaussian mixture model (GMM) are used to rank the non-conforming or bad pallets in the order of severity. The Hotelling multivariate T2 test statistic along with Mason-Tracy-Young (MYT) signal decomposition method is used to identify the features that are affected by the bad pallets. These algorithms were implemented in the Advanced Pallet Analysis module of the FCA US software Body Shop Analysis Toolbox (BSAT). The identified bad pallets are visualized in a scatter plot with a different color for each of the top bad pallets. The run chart of an affected feature confirms the bad pallet by highlighting data points from the bad pallet.
Journal Article

Impact of A/F Ratio on Ion Current Features Using Spark Plug with Negative Polarity

2008-04-14
2008-01-1005
The increasing interest and requirement for improved electronic engine control during the last few decades, has led to the implementation of several different sensor technologies. The process of utilizing the spark plug as a combustion probe to monitor the different combustion related parameters such as knock, misfire, Ignition timing, and air-fuel ratio have been the subject of research for some time now. The air-fuel ratio is one of the most important engine operating parameters that has an impact on the combustion process, engine-out emissions, fuel economy, indicated mean effective pressure and exhaust gas composition and temperature. Furthermore, air-fuel ratio affects the ion produced during flame kernel initiation and post flame propagation. In this paper, an investigation is made to determine the effect of air-fuel ratio on ion current, using gasoline and methane under different spark plug designs and engine operating conditions.
Journal Article

A New Device for Multi-Axial Tissue Testing: Application to Combined Bending and Shear Loading of the Spine

2009-04-20
2009-01-0249
A multi-axial test device was designed to obtain the material properties of the lumbar spine in combined loading modes. The custom designed tester consists of a rigid platen driven by three DC powered geared motors. Two motors, each connected to parallel linear actuators control the angular displacement (for flexion and extension) and vertical motion (for tension and compression), while a third DC motor connected to a threaded rod was employed to control the horizontal displacement (for anterior and posterior shear) of the rigid platen. The testing machine is driven in displacement-control mode by a feedback system based on data from three rotary potentiometers. Six entire lumbar spine segments (T12-S1) were potted in aluminum cups with DynaCast and tested within failure limits to compression, tension, anterior shear, posterior shear, flexion, extension, anterior shear-flexion, posterior shear-extension and finally in combined anterior shear-flexion loading.
Journal Article

The Combined Effect of HCHO and C2H4 Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2011-04-12
2011-01-1392
Misfiring or partial combustion during diesel engine operation results in the production of partial oxidation products such as ethylene (C₂H₄), carbon monoxide and aldehydes, in particular formaldehyde (HCHO). These compounds remain in the cylinder as residual gases to participate in the following engine cycle. Carbon monoxide and formaldehyde have been shown to exhibit a dual nature, retarding ignition in one temperature regime, yet decreasing ignition delay periods of hydrocarbon mixtures as temperatures exceed 1000°K. Largely unknown is the synergistic effects of such species. In this work, varying amounts of C₂H₄ and HCHO are added to the intake air of a naturally aspirated optical diesel engine and their combined effect on autoignition and subsequent combustion is examined. To observe the effect of these dopants on the low-temperature heat release (LTHR), ultraviolet chemiluminescent images are recorded using intensified CCD cameras.
Journal Article

Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

2015-04-14
2015-01-0806
This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cotton seed biodiesel while assessing the engine's multi-fuel capability. Millions of tons of cotton seeds are available in the south of the US every year and approximately 10% of oil contained in the seeds can be extracted and transesterified. An investigation of combustion, emissions, and efficiency was performed using mass ratios of 20-50% cotton seed biodiesel (CS20 and CS50) in ultra-low sulfur diesel #2 (ULSD#2). Each investigation was run at 2400 rpm with loads of 4.2 - 6.3 IMEP and compared to the reference fuel ULDS#2. The ignition delay ranged in a narrow interval of 0.8-0.97ms across the blends and the heat release rate showed comparable values and trends for all fuel blends. The maximum volume averaged cylinder temperature increased by approximately 100K with each increase in 1 bar IMEP load but the maximum remained constants across the blends.
Technical Paper

In-Cylinder Air/Fuel Ratio Approximation Using Spark Gap Ionization Sensing

1998-02-23
980166
Experiments were conducted on a single cylinder engine to measure the ionization current across the spark plug electrodes as a function of key operating parameters including air/fuel ratio. A unique ignition circuit was adapted to measure the ion current as early as 300 microseconds after the initiation of spark discharge. A strong relationship between air/fuel ratio and features of the measured ion current was observed. This relationship can be exploited via relatively simple algorithms in a wide range of electronic engine control strategies. Measurements of spark plug ion current for approximating air/fuel ratio may be especially useful for use with low cost mixture control in small engine applications. Cylinder-to-cylinder mixture balancing in conjunction with a global exhaust gas oxygen sensor is another promising application of spark plug ion current measurement.
Technical Paper

Determination of the Gas-Pressure Torque of a Multicylinder Engine from Measurements of the Crankshaft's Speed Variation

1998-02-23
980164
The local variation of the crankshaft's speed in a multicylinder engine is determined by the resultant gas-pressure torque and the torsional deformation of the crankshaft. Under steady-state operation, the crankshaft's speed has a quasi-periodic variation and its harmonic components may be obtained by a Discrete Fourier Transform (DFT). Based on a lumped-mass model of the shafting, correlations are established between the harmonic components of the speed variation and the corresponding components of the engine torque. These correlations are used to calculate the gas-pressure torque or the indicated mean effective pressure (IMEP) from measurements of the crankshaft's speed.
Technical Paper

Ion Current in a Spark Ignition Engine using Negative Polarity on Center Electrode

2007-04-16
2007-01-0646
Most of the previous research on flame ionization in spark ignition engines applied positive polarity on the spark plug center electrode, referred to as positively biased probe. In this paper an investigation is made to determine the characteristics of the ion current signal with negatively biased probe. The factors that contribute to the second ion current peak, reported to be missing with negative polarity, are investigated. Experiments were conducted on a research single-cylinder, spark ignition engine and the negative polarity is applied by a SmartFire Plasma Ignition system. The effect of different spark plug designs and engine operating parameters on the amplitude and timing of each of the two ion current peaks is determined. The results indicated that, with negative polarity, the cathode area is one of the main factors that contribute to the amplitude of the ion current signal, particularly the second peak.
Technical Paper

Fatigue Resistance of Short Fiber-Reinforced TiNi/Al6061-SiC Composite

2007-04-16
2007-01-1423
The short NiTi fiber-reinforced NiTi/Al6061-SiC composite was recently developed through the U.S. Army SBIR Phase-II program [1]. The objectives of this project are to use short NiTi fiber reinforcement to induce compressive stress through shape memory effect, to use silicon carbide (SiC) particulate reinforcement to enhance the mechanical properties of the aluminum matrix, to gain fundamental knowledge of short NiTi fiber-reinforced aluminum matrix composite, and eventually to improve fatigue resistance, impact damage tolerance and fracture toughness of the composite. The fatigue life, damage and fracture behavior of TiNi/Al6061-SiC, TiNi/Al6061, Al6061-SiC composites as well as monolithic Al6061 alloy were investigated under fully reversed cyclic loading. It was found that fatigue life of NiTi/Al6061-SiC composite, in term of the cycles, increased by two orders of magnitude, compared to monolithic Al6061 alloy
Technical Paper

Engine Friction Model for Transient Operation of Turbocharged, Common Rail Diesel Engines

2007-04-16
2007-01-1460
The simulation of I.C. Engines operation, especially during transients, requires a fairly accurate estimation of the internal mechanical losses of the engine. The paper presents generic friction models for the main friction components of the engine (piston-ring-liner assembly, bearings and valve train), considering geometry of the engine parts and peculiarities of the corresponding lubrication processes. Separate models for the mechanical losses introduced by the injection system, oil and water pumps are also developed. All models are implemented as SIMULINK modules in a complex engine simulation code developed in SIMULINK and capable to simulate both steady state and transient operating conditions. Validation is achieved by comparison with measurements made on a four cylinder, common rail diesel engine, on a test bench capable to run controlled transients.
Technical Paper

Reciprocating Engine Piston Secondary Motion - Literature Review

2008-04-14
2008-01-1045
The piston secondary motion is an important phenomenon in internal combustion (IC) engine. It occurs due to the piston transverse and rotational motion during piston reciprocating motion. The piston secondary motion results in engine friction and engine noise. There has been lot of research activities going on in piston secondary motion using both analytical models and experimental studies. These studies are aimed at reducing the engine friction as well as the noise generated due to piston secondary motion. The aim of this paper is to compile the research actives carried out on the piston secondary motion and discuss the possible research opportunities for reducing the IC engine piston secondary motion.
X