Refine Your Search

Topic

Author

Search Results

Journal Article

Experimental Assessments of Parallel Hybrid Medium-Duty Truck

2014-05-20
2014-01-9021
Fuel consumption reduction on medium-duty tactical truck has and continues to be a significant initiative for the U.S. Army. The Crankshaft-Integrated-Starter-Generator (C-ISG) is one of the parallel hybrid propulsions to improve the fuel economy. The C-ISG configuration is attractive because one electric machine can be used to propel the vehicle, to start the engine, and to be function as a generator. The C-ISG has been implemented in one M1083A1 5-ton tactical cargo truck. This paper presents the experimental assessments of the C-ISG hybrid truck characteristics. The experimental assessments include all electric range for on- and off-road mission cycles and fuel consumption for the high voltage battery charging. Stationary tests related to the charging profile of the battery pack and the silent watch time duration is also conducted.
Technical Paper

Analyses of Low-Frequency Motorcycle Noise Under Both Steady-State and Transient Operating Conditions

2021-08-31
2021-01-1108
This paper presents experimental investigations of diagnosing and analyzing the low-frequency, low- SNR (Signal to Noise Ratio) noise sources of three motorcycles using a hybrid technology that consists of a passive SODAR (Sonic Detection And Ranging) and modified HELS (Helmholtz Equation Least Squares) methods. The former enables one to determine the precise locations of multiple sound sources in 3D space simultaneously over the entire frequency range that is consistent with a measurement microphone in non-ideal environment, where there are random background noise and unknown interfering signals. The latter enables one to reconstruct all acoustic quantities such as the acoustic pressure, acoustic intensity, time-averaged acoustic power, radiation patterns, and sound transmission paths through arbitrarily shaped vibrating structures.
Technical Paper

Lithium-Ion Battery Cell Modeling with Experiments for Battery Pack Design

2020-04-14
2020-01-1185
Lithium-ion polymer battery has been widely used for vehicle onboard electric energy storage ranging from 12V SLI (Starting, Lighting, and Ignition), 48V mild hybrid electric, to 300V battery electric vehicle. Formulation on cell parameters acquired from minimum numbers of experiments, the modeling and simulation could be an effective approach in predicting battery performance, thermal effectiveness, and degradation. This paper describes the modeling, simulation, and validation of Lithium-Nickel-Manganese-Cobalt-Oxide (LiNiMnCoO2) based cell with 3.6V nominal voltage and 20Ah capacity. Constant current 20A, 40A, 60A, and 80A discharge tests are conducted in the computer-controlled cycler and temperature chamber. Discharging voltage curves and cell surface temperature distributions are recorded in each discharging test. A three-dimensional cell model is constructed in the COMSOL multi-physics platform based on the cell parameters.
Technical Paper

Step by Step Conversion of ICE Motorcycle to a BEV Configuration

2020-04-14
2020-01-1436
With the mass movement toward electrification and renewable technologies, the scope of innovation of electrification has gone beyond the automotive industry into areas such as electric motorcycle applications. This paper provides a discussion of the methodology and complexities of converting an internal combustion motorcycle to an electric motorcycle. In developing this methodology, performance goals including, speed limits, range, weight, charge times, as well as riding styles will be examined and discussed. Based on the goals of this paper, parts capable of reaching the performance targets are selected accordingly. Documentation of the build process will be presented along with the constraints, pitfalls, and difficulties associated with the process of the project. The step-by-step process that is developed can be used as a guideline for future build and should be used as necessary.
Technical Paper

Experimental Evaluation of Longitudinal Control for Automated Vehicles through Vehicle-in-the-Loop Testing

2020-04-14
2020-01-0714
Automated driving functionalities delivered through Advanced Driver Assistance System (ADAS) have been adopted more and more frequently in consumer vehicles. The development and implementation of such functionalities pose new challenges in safety and functional testing and the associated validations, due primarily to their high demands on facility and infrastructure. This paper presents a rather unique Vehicle-in-the-Loop (VIL) test setup and methodology compared those previously reported, by combining the advantages of the hardware-in-the-loop (HIL) and traditional chassis dynamometer test cell in place of on-road testing, with a multi-agent real-time simulator for the rest of test environment.
Technical Paper

Using Polygot Persistence with NoSQL Databases for Streaming Multimedia, Sensor, and Messaging Services in Autonomous Vehicles

2020-04-14
2020-01-0942
The explosion of big data has created challenges for both cloud-based systems and Autonomous Vehicles (AVs) in data collection and management. The same challenges are now being realized in developing databases for integrated sensors, streaming, real-time and on-demand services in AVs. With just one AV expecting to generate over 30 Terabytes of data a day, modern NoSQL databases provide opportunities to horizontally scale AV data seamlessly. NoSQL provides solutions designed to accommodate a wide variety of data models such as, key-value, document, column and graph databases. Key-value stores are by nature scalable, fast processing, and distribute horizontally. These databases are tasked with handling several data types including IoT, radar, lidar, ultra-sonic sensors, GPS, odometry, and sensor data while providing streaming and real-time services. NoSQL can store and utilize structured, semi-structured, and unstructured data necessary for multimedia storage needs.
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Today’s advanced vehicles have high degree of interaction due to numerous sensors, actuators and also with complex communication within the control units. In order to hack a vehicle, it has to be within a certain range of communication. Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure. The results discussed here focus on the first detection method that is Cyber-Attack detection algorithm.
Journal Article

Comparison of In-Cylinder Soot Evolution in an Optically Accessible Engine Fueled with JP-8 and ULSD

2012-04-16
2012-01-1315
Due to the single fuel concept implemented by the US military, the soot production of diesel engines fueled with JP-8 has important implications for military vehicle visual signature and survivability. This work compares in-cylinder soot formation and oxidation of JP-8 and ULSD in a small-bore, optical diesel engine. Experimental engine-out soot emission measurements are compared to crank-angle resolved two-color measurements of soot temperature and optical thickness, KL. A 3-D chemical kinetic-coupled CFD model with line of sight integration is employed in order to investigate the soot distribution in a 2-D projection associated with the imaging plane, as well as to aid in interpreting the third dimension along the optical depth which is not available within the experimental work. The study also examines the effect of volatility on soot emission characteristics by CFD simulation.
Technical Paper

Fatigue Resistance of Short Fiber-Reinforced TiNi/Al6061-SiC Composite

2007-04-16
2007-01-1423
The short NiTi fiber-reinforced NiTi/Al6061-SiC composite was recently developed through the U.S. Army SBIR Phase-II program [1]. The objectives of this project are to use short NiTi fiber reinforcement to induce compressive stress through shape memory effect, to use silicon carbide (SiC) particulate reinforcement to enhance the mechanical properties of the aluminum matrix, to gain fundamental knowledge of short NiTi fiber-reinforced aluminum matrix composite, and eventually to improve fatigue resistance, impact damage tolerance and fracture toughness of the composite. The fatigue life, damage and fracture behavior of TiNi/Al6061-SiC, TiNi/Al6061, Al6061-SiC composites as well as monolithic Al6061 alloy were investigated under fully reversed cyclic loading. It was found that fatigue life of NiTi/Al6061-SiC composite, in term of the cycles, increased by two orders of magnitude, compared to monolithic Al6061 alloy
Technical Paper

Numerical Study of Ultra Low Solidity Airfoil Diffuser in an Automotive Turbocharger Compressor

2009-04-20
2009-01-1470
For the application of advanced clean combustion technologies, such as diesel HCCI/LTC, a compressor with high efficiency over a broad operation range is required to supply a high amount of EGR with minimum pumping loss. A compressor with high pitch of vaneless diffuser would substantially improve the flow range of the compressor, but it is at the cost of compressor efficiency, especially at low mass flow area where most of the city driving cycles resides. In present study, an ultra low solidity compressor vane diffuser was numerically investigated. It is well known that the flow leaving the impeller is highly distorted, unsteady and turbulent, especially at relative low mass flow rate and near the shroud side of the compressor. A conventional vaned diffuser with high stagger angle could help to improve the performance of the compressor at low end. However, adding diffuser vane to a compressor typically restricts the flow range at high end.
Technical Paper

Characteristics of a Common Rail Diesel Injection System under Pilot and Post Injection Modes

2002-03-04
2002-01-0218
Experiments were conducted to investigate the characteristics of a common rail fuel injection system using a flow rate test rig and a single cylinder research diesel engine. Experiments covered speeds and loads typical to engine conditions under Hybrid Electric Vehicle operation. Different injection modes were investigated including main injection, main-post injection and pilot-main injection. The analysis indicated that the common rail fuel pressure affects all the injection parameters including the start of fuel delivery, its duration and amount under all modes of injection. Also, the pressure waves produced in the system have an impact on the operation of the nozzle-needle and fuel delivery particularly in the main-post injection mode.
Technical Paper

Crack Failure Mode Analysis for Cam-Housing Rocker Arm and Pin

2017-03-28
2017-01-0358
During the extensive testing under NATO and Commercial Standards, crack is observed in camshaft housing to initiate from the eccentric shaft bore and go toward the hold down bolt hole. Hence lab test proposal is originated to induce similar failure in a controlled method and then to compare new design alternatives. CAE analysis follows the same set up as the lab test to duplicate failure mode in stress analysis and fatigue analysis with duty cycle loads, and then figures out two strategies on how to improve the design, including geometry change and material change. In geometry wise, four new design iterations are evaluated for comparison. In material wise, one new material for camshaft housing and five manufacturing effect parameters for pin and rocker arm are compared, including ground, machined, machined and decarburization, casting, as well as casting and nitride. With those comparisons, all manufacturing parameters are compared based on effectiveness to affect the fatigue life.
Technical Paper

Control Development for an Engine-Disconnect Clutch in a Pre-Transmission Parallel Hybrid Electric Vehicle

2016-10-17
2016-01-2224
This paper details the development of the control algorithms to characterize the behavior of an electrohydraulic actuated dry clutch used in the powertrain of the Wayne State University EcoCAR 3 Pre-Transmission Parallel hybrid vehicle. The paper describes the methodology and processes behind the development of the clutch physical model and electronic control unit to support the calibration of the vehicle’s hybrid supervisory controller. The EcoCAR 3 competition challenges sixteen North American universities to re-engineer the 2016 Chevrolet Camaro to reduce its environmental impact without compromising its performance and consumer acceptability. The team is in final stages of Year Two competition, which focuses on the powertrain components integration into the selected hybrid architecture. The dry clutch used by the team to enable the coupling between the engine and the electric motor is a key component of the Pre-Transmission Parallel configuration.
Technical Paper

Advancement and Validation of a Plug-In Hybrid Electric Vehicle Plant Model

2016-04-05
2016-01-1247
The objective of the research into modeling and simulation was to provide an improvement to the Wayne State EcoCAR 2 team’s math-based modeling and simulation tools for hybrid electric vehicle powertrain analysis, with a goal of improving the simulation results to be less than 10% error to experimental data. The team used the modeling and simulation tools for evaluating different outcomes based on hybrid powertrain architecture changes (hardware), and controls code development and testing (software). The first step was model validation to experimental data, as the plant models had not yet been validated. This paper includes the results of the team’s work in the U.S. Department of Energy’s EcoCAR 2 Advanced vehicle Technical Competition for university student teams to create and test a plug-in hybrid electric vehicle for reducing petroleum oil consumption, pollutant emissions, and Green House Gas (GHG) emissions.
Technical Paper

Development Of A Practical Multi-disciplinary Design Optimization (MDO) Algorithm For Vehicle Body Design

2016-04-05
2016-01-1537
The present work is concerned with the objective of developing a process for practical multi-disciplinary design optimization (MDO). The main goal adopted here is to minimize the weight of a vehicle body structure meeting NVH (Noise, Vibration and Harshness), durability, and crash safety targets. Initially, for simplicity a square tube is taken for the study. The design variables considered in the study are width, thickness and yield strength of the tube. Using the Response Surface Method (RSM) and the Design Of Experiments (DOE) technique, second order polynomial response surfaces are generated for prediction of the structural performance parameters such as lowest modal frequency, fatigue life, and peak deceleration value. The optimum solution is then obtained by using traditional gradient-based search algorithm functionality “fmincon” in commercial Matlab package.
Technical Paper

A Novel Approach for Combat Vehicle Mobility Definition and Assessment

2012-04-16
2012-01-0302
Mobility assessment for combat vehicles is often a great challenge for the military due to various subjective attributes. The attributes' characteristics vary significantly depending on the vehicle type and its operating environments such as terrain, weather, and human factors. A clear definition and relationship between multiple attributes including human factors is necessary to assess mobility. To the best of authors' knowledge, many existing mobility assessment techniques use complex analytical methods and focus on individual attributes. In this paper, for the first time, the authors propose a novel approach to define vehicle mobility and its influencing attributes using qualitative linguistic fuzzy variables, which are defined as having values between 0 and 1. The authors also propose a fuzzy logic mobility (FLM) model and a simulation approach to assess a combat vehicle's mobility.
Technical Paper

Parallel-Through-The-Road Plug-In Hybrid Vehicle Design Development Process

2012-09-10
2012-01-1772
The Wayne State University (WSU) EcoCAR 2 Team designed the conversion of a GM donated 2013 Chevrolet Malibu to a Parallel-Through-The-Road (PTTR) Plug-In Hybrid vehicle within a 9 month timeframe. This fast prototyping project used the EcoCAR 2 Vehicle Development Process (EVDP). Various tradeoffs were made to meet all competition requirements and to make the vehicle as competitive as possible within budget, time and experience limitations. The chosen PTTR architecture, nicknamed by the team as “E2D2” (Ethanol-Electric Dual-Drivetrain), provides up to 35.7 electric only miles and a fuel economy of 60 miles per gallons gasoline equivalent (mpgge) or 3.96 liters gasoline equivalent (lge) per one hundred km. This is accomplished using an E85 engine-driven front traction system and a battery-electric-motors-driven rear traction system. The team developed the control system and designed the packaging and integration of all required components including the Energy Storage System (ESS).
Technical Paper

Pulse Power Testing of Batteries and Supercapacitors for Hybrid Electric Vehicle Applications: A Comparison of Constant Current, Constant Power, and Ramped Power Transients

2013-04-08
2013-01-1535
The central performance requirement for electrochemical energy storage systems for the full power-assist hybrid electric vehicle (HEV) is pulse power capability, typically 25-40 kW pulse power capability for 10 seconds duration. Standard test procedures utilize constant current pulses. However, in the HEV application, the power transient for acceleration is a ramped power transient and the power transient for regenerative braking power is a descending power ramp. This paper compares the usable power capability of batteries and supercapacitors under constant current, constant power, and ramped power transients. Although the usable battery discharge power is relatively insensitive to the transient type applied, 10-40% higher regenerative braking charge capability is observed with ramped power transients. With supercapacitors, the discharge and charge capability is much more strongly dependent on the type of power transient.
Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

2006-04-03
2006-01-0927
Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.
Technical Paper

An Improved Adaptive Data Reduction Protocol for In-Vehicle Networks

2006-04-03
2006-01-1327
The demand for drive-by-wire, pre-crash warning and many other new features will require high bandwidth from the future in-vehicle networks. One way to satisfy the high bandwidth requirement of future vehicles is to use a higher bandwidth bus or multiple busses. However, the use of a higher bandwidth bus will increase the cost of the network. Similarly, the use of multiple buses will increase cost as well as the complexity of wiring. Thus, neither option is a viable solution. Another option could be the development of a higher layer protocol to reduce the amount of data to be transferred. The higher layer protocol could be acceptable provided it does not increase the message latencies. The cost of implementing the protocol will be marginal because it can be done by making changes in software. Various data reduction protocols are available in the literature. We have made changes in the existing data reduction protocols to improve the performance of the protocol.
X