Refine Your Search

Topic

Search Results

Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

2015-04-14
2015-01-1482
Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Journal Article

An Innovative Modeling Approach to Thermal Management using Variable Fidelity Flow Network Models Imbedded in a 3D Analysis

2011-04-12
2011-01-1048
Speed and accuracy are the critical needs in software for the modeling and simulation of vehicle cooling systems. Currently, there are two approaches used in commercially available thermal analysis software packages: 1) detailed modeling using complex and sophisticated three-dimensional (3D) heat transfer and computational fluid dynamics, and 2) rough modeling using one-dimensional (1D) simplistic network solvers (flow and thermal) for quick prediction of flow and thermal fields. The first approach offers accuracy at the cost of speed, while the second approach provides the simulation speed, sacrificing accuracy and can possibly lead to oversimplification. Therefore, the analyst is often forced to make a choice between the two approaches, or find a way to link or couple the two methods. The linking between one-dimensional and three-dimensional models using separate software packages has been attempted and successfully accomplished for a number of years.
Journal Article

Development of the Enhanced Peripheral Detection Task: A Surrogate Test for Driver Distraction

2012-04-16
2012-01-0965
Up to now, there is no standard methodology that addresses how driver distraction is affected by perceptual demand and working memory demand - aside from visual allocation. In 2009, the Peripheral Detection Task (PDT) became a NHTSA recommended measure for driver distraction [1]. Then the PDT task was renamed as the Detection Response Task (DRT) because the International Standards Organization (ISO) has identified this task as a potential method for assessing selective attention in detection of visual, auditory, tactile and haptic events while driving. The DRT is also under consideration for adoption as an ISO standard surrogate test for driver performance for new telematics designs. The Wayne State University (WSU) driver imaging group [2, 3] improved the PDT and created the Enhanced Peripheral Detection Task I (EPDT-I) [4]. The EPDT-I is composed of a simple visual event detection task and a video of a real-world driving scene.
Journal Article

Iterative Learning Control for a Fully Flexible Valve Actuation in a Test Cell

2012-04-16
2012-01-0162
An iterative learning control (ILC) algorithm has been developed for a test cell electro-hydraulic, fully flexible valve actuation system to track valve lift profile under steady-state and transient operation. A dynamic model of the plant was obtained from experimental data to design and verify the ILC algorithm. The ILC is implemented in a prototype controller. The learned control input for two different lift profiles can be used for engine transient tests. Simulation and bench test are conducted to verify the effectiveness and robustness of this approach. The simple structure of the ILC in implementation and low cost in computation are other crucial factors to recommend the ILC. It does not totally depend on the system model during the design procedure. Therefore, it has relatively higher robustness to perturbation and modeling errors than other control methods for repetitive tasks.
Technical Paper

Effect of Load and Other Parameters on Instantaneous Friction Torque in Reciprocating Engines

1991-02-01
910752
The effect of many operating parameters on the instantaneous frictional (IFT) torque was determined experimentally in a single cylinder diesel engine. The method used was the (P - ω)method developed earlier at Wayne State University. The operating parameters were load, lubricating oil grade, oil, temperature and engine speed. Also IFT was determined under simulated motoring conditions, commonly used in engine friction measurements. The results showed that the motoring frictional torque does not represent that under firing conditions even under no load. The error reached 31.4% at full load. The integrated frictional torque over the whole cycle and the average frictional torque were determined. A comparison of the average frictional torque under load was compared with the average motoring torque.
Technical Paper

Fatigue Resistance of Short Fiber-Reinforced TiNi/Al6061-SiC Composite

2007-04-16
2007-01-1423
The short NiTi fiber-reinforced NiTi/Al6061-SiC composite was recently developed through the U.S. Army SBIR Phase-II program [1]. The objectives of this project are to use short NiTi fiber reinforcement to induce compressive stress through shape memory effect, to use silicon carbide (SiC) particulate reinforcement to enhance the mechanical properties of the aluminum matrix, to gain fundamental knowledge of short NiTi fiber-reinforced aluminum matrix composite, and eventually to improve fatigue resistance, impact damage tolerance and fracture toughness of the composite. The fatigue life, damage and fracture behavior of TiNi/Al6061-SiC, TiNi/Al6061, Al6061-SiC composites as well as monolithic Al6061 alloy were investigated under fully reversed cyclic loading. It was found that fatigue life of NiTi/Al6061-SiC composite, in term of the cycles, increased by two orders of magnitude, compared to monolithic Al6061 alloy
Technical Paper

Numerical Study of Ultra Low Solidity Airfoil Diffuser in an Automotive Turbocharger Compressor

2009-04-20
2009-01-1470
For the application of advanced clean combustion technologies, such as diesel HCCI/LTC, a compressor with high efficiency over a broad operation range is required to supply a high amount of EGR with minimum pumping loss. A compressor with high pitch of vaneless diffuser would substantially improve the flow range of the compressor, but it is at the cost of compressor efficiency, especially at low mass flow area where most of the city driving cycles resides. In present study, an ultra low solidity compressor vane diffuser was numerically investigated. It is well known that the flow leaving the impeller is highly distorted, unsteady and turbulent, especially at relative low mass flow rate and near the shroud side of the compressor. A conventional vaned diffuser with high stagger angle could help to improve the performance of the compressor at low end. However, adding diffuser vane to a compressor typically restricts the flow range at high end.
Technical Paper

Innovative Graduate Program in Mechatronics Engineering to Meet the Needs of the Automotive Industry

2010-10-19
2010-01-2304
A new inter-disciplinary degree program has been developed at Lawrence Technological University: the Master of Science in Mechatronic Systems Engineering Degree (MS/MSE). It is one of a few MS-programs in mechatronics in the U.S.A. today. This inter-disciplinary program reflects the main areas of ground vehicle mechatronic systems and robotics. This paper presents areas of scientific and technological principles which the Mechanical Engineering, Electrical and Computer Engineering, and Math and Computer Science Departments bring to Mechatronic Systems Engineering and the new degree program. New foundations that make the basis for the program are discussed. One of the biggest challenges was developing foundations for mechanical engineering in mechatronic systems design and teaching them to engineers who have different professional backgrounds. The authors first developed new approaches and principles to designing mechanical subsystems as components of mechatronic systems.
Technical Paper

Design of Temperature Insensitive Ribs for Crash Test Dummies

2003-03-03
2003-01-0502
The Isodamp damping material (also known as Navy Damp) used in the ribs of current crash test dummies provides human-like damping to the thorax under impact. However, the range of temperature over which it can be used is very small. A new rib design using laminates of steel, fiberglass, and commercially available viscoelastic material has been constructed. Load-deflection response and hysteresis of the laminated ribs were compared with corresponding conventional ribs fabricated from steel and Isodamp. Impact tests were conducted on laminated and conventional ribs at 18.5° C, 22.2° C and 26.6° C. Results indicate that the response of the laminated ribs is essentially the same as that of the ribs with Isodamp at 22.2° C, which is the operating temperature of the conventional ribs. The variation in the impact response of the newly developed laminated ribs in the temperature range of 18.5° C to 26.6° C was less than 10%.
Technical Paper

Offline Electro-Hydraulic Clutch Bench Testing Alternatives for a Pre-Transmission Parallel Hybrid Powertrain

2016-10-17
2016-01-2225
This paper details the development of a test-bench simulation to characterize the behavior of an electro-hydraulic actuated dry clutch used in a pre-transmission parallel hybrid powertrain architecture of Wayne State University EcoCAR 3. Engage and disengage systems play a crucial role in a pre-transmission parallel hybrid architecture. The most common device used to meet the purpose of physically connecting internal combustion engine and electric powertrains is a dry clutch. Its own characteristics and capabilities allow its usage for this application. The transition between the pure electric and hybrid modes is dictated by the main control strategy. Therefore, the engaging system will be widely used when switching from charge depleting to charge sustaining mode, and vice versa. In addition, when torque is required from both sources for higher performance, the clutch will be responsible for mechanically connecting both torque sources.
Technical Paper

Study of Muscle Activation of Driver’s Lower Extremity at the Collision Moment

2016-04-05
2016-01-1487
At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along.
Technical Paper

Prediction of the Behaviors of Adhesively Bonded Steel Hat Section Components under Axial Impact Loading

2017-03-28
2017-01-1461
Adhesively bonded steel hat section components have been experimentally studied in the past as a potential alternative to traditional hat section components with spot-welded flanges. One of the concerns with such components has been their performance under axial impact loading as adhesive is far more brittle as compared to a spot weld. However, recent drop-weight impact tests have shown that the energy absorption capabilities of adhesively bonded steel hat sections are competitive with respect to geometrically similar spot-welded specimens. Although flange separation may take place in the case of a specimen employing a rubber toughened epoxy adhesive, the failure would have taken place post progressive buckling and absorption of impact energy.
Technical Paper

Lattice Brake Disc Instability Analysis Using Transient Complex Eigenvalue Method in Terms of Excitation Applied to the Pad

2018-04-03
2018-01-0091
This paper describes an integrated approach to the analysis of brake squeal with newly lattice brake disc design. The procedure adopted to define the lattice properties by considering the periodicity cell of lattice plates, present equations of motion and modes response of a periodic lattice disc in principal coordinates on the rotating disc which excited by distributed axial load. The non-linear contact problem is carried out based on a typical passenger car brake for vanned and lattice brake disc types as it undergoes a partial simulation of the SAE J2521 drag braking noise test. The experimental modal analysis (EMA) with impact hammer test is used to obtain the brake rotor modal properties and validated finite element Free- Free State and stability analysis. The fugitive nature of brake squeal is analyzed through the complex eigenvalue extraction technique to define dynamic instability.
Technical Paper

A Distributed Engineering Computer Aided Learning System

2012-04-16
2012-01-0089
In this paper, we proposed a distributed Engineering Computer Aided Learning System. Instead of attending engineering teaching sessions, engineering students are able to interact with the software to gain the same amount of teaching materials. Besides, they will interact with other engineering students from other Engineering schools. The proposed software has the ability to examine the student step by step to reach certain goals. The training and the examination will be different based on the student level and his learning process. Using this system the role of excellent professor can be achieved. The software will have two sessions, i.e. test session and learning session. The software provides the capability of knowledge sharing between multi schools and different educational systems that can provide the students with a large set of training materials. The system was built using JAVA programming language.
Technical Paper

Institute for Manufacturing Research, Wayne State University

1998-05-12
981345
The purpose of the Institute for Manufacturing Research (IMR) is to enhance Wayne State University's existing technological strength in the areas of manufacturing research which have demonstrated potential benefits for the State's economy. IMR's faculty conduct basic and applied research in selected areas of manufacturing science. The research programs within the Institute are broadly interdisciplinary and industrially interactive, and are organized around the following areas: materials development, modification, and nondestructive evaluation; software technology for manufacturing and engineering; and product reliability and machine tool research. Faculty from eight departments within the Colleges of Science and Engineering participate in IMR.
Technical Paper

Parallel-Through-The-Road Plug-In Hybrid Vehicle Modeling and Simulation by Wayne State University for EcoCAR2

2013-04-08
2013-01-0541
The Wayne State University (WSU) EcoCAR2 student team designed, modeled, Model-In-the-Loop (MIL) tested, Software-In-the-Loop (SIL) simulation tested, and Hardware-In-the-Loop (HIL) simulation tested the team's conversion design for taking a 2013 Chevrolet Malibu and converting it into a Parallel-Through-The-Road (PTTR) plug-in hybrid. The 2013 Malibu is a conventional Front Wheel Drive (FWD) vehicle and the team's conversion design keeps the conventional FWD and adds a Rear Wheel Drive (RWD) powertrain consisting of an electric motor, a single speed reduction gearbox and a differential to drive the rear wheels -where none of these previously existed on the rear wheels. The RWD addition creates the PTTR hybrid powertrain architecture of two driven axles where the mechanical torque path connection between the two powertrains is through the road, rather than a mechanical torque path through gears, chains, or shafts.
Technical Paper

Equivalent Drive Cycle Analysis, Simulation, and Testing - Wayne State University's On-Road Route for EcoCAR2

2013-04-08
2013-01-0549
The Wayne State University (WSU) EcoCAR2 student team is participating in a design competition for the conversion of a 2013 Chevrolet Malibu into a plug-in hybrid. The team created a repeatable on-road test drive route using local public roads near the university that would be of similar velocity ranges contained in the EcoCAR2 4-Cycle Drive Schedule - a weighted combination of four different EPA-based drive cycles (US06 split into city and highway portions, all of the HWFET, first 505 seconds portion of UDDS). The primary purpose of the team's local on-road route was to be suitable for testing the team's added hybrid components and control strategy for minimizing petroleum consumption and tail pipe emissions. Comparison analysis of velocities was performed between seven local routes and the EcoCAR2 4-Cycle Drive Schedule. Three of the seven local routes had acceptable equivalence for velocity (R₂ ≻ 0.80) and the team selected one of them to be the on-road test drive route.
Technical Paper

Full-Scale Experimental Simulation of Pedestrian-Vehicle Impacts

1976-02-01
760813
A series of 10 full-scale experimental simulations of pedestrian-vehicle impact was carried out using cadavers and a 95th percentile anthropomorphic dummy. The test subjects were impacted laterally and frontally at 24, 32 and 40 km/h (15, 20 and 24 mph). Each subject was extensively instrumented with miniature accelerometers, up to a maximum of 53 transducers. The nine-accelerometer scheme was used to measure angular acceleration of body segments from which it was possible to compute the head injury criterion (HIC) for cadaver head impact. A full-size Chevrolet was used as the impacting vehicle. The impact event was three-dimensional in nature during which the body segments executed complex motions. Dummy impacts were more repeatable than cadaver impacts but the response of these test subjects were quite different. The HIC was higher for head-hood impact than for head-ground impact in two of the cases analyzed.
Technical Paper

Control of Robots Using Discrete Event System Theory

2018-04-03
2018-01-1391
In this paper, we present a project being conducted at Yalong Educational Equipment Company on control of educational robots using discrete event system theory. An educational robot is a programmable robot to be used by students for training and learning. To model a robot, we divide the robot into nine physical modules. Each module is modeled as an automaton. Parallel composition is used to obtain the entire model. The robot can be programmed to perform sequences of basic tasks. We investigate six basic tasks and use supervisors to control and achieve the tasks. Desired languages are obtained for all tasks and supervisory control theory is used to synthesize supervisors. To reduce computational complexity, modular/coordinated supervisors are used
X