Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Cracking Failure Analysis and Optimization on Exhaust Manifold of Engine with CFD-FEA Coupling

2014-04-01
2014-01-1710
For fracture cracks that occurred in the tight coupling exhaust manifold durability test of a four-cylinder gasoline engine with EGR channel, causes and solutions for fracture failure were found with the help of CFD and FEA numerical simulations. Wall temperature and heat transfer coefficient of the exhaust manifold inside wall were first accurately obtained through the thermal-fluid coupling analysis, then thermal modal and thermoplastic analysis were acquired by using the finite element method, on account of the bolt pretightening force and the contact relationship between flange face and cylinder head. Results showed that the first-order natural frequency did not meet the design requirements, which was the main reason of fatigue fracture. However, when the first-order natural frequency was rising, the delta equivalent plastic strain was increasing quickly as well.
Journal Article

Simulation of Organic Rankine Cycle Power Generation with Exhaust Heat Recovery from a 15 liter Diesel Engine

2015-04-14
2015-01-0339
The performance of an organic Rankine cycle (ORC) that recovers heat from the exhaust of a heavy-duty diesel engine was simulated. The work was an extension of a prior study that simulated the performance of an experimental ORC system developed and tested at Oak Ridge National laboratory (ORNL). The experimental data were used to set model parameters and validate the results of that simulation. For the current study the model was adapted to consider a 15 liter turbocharged engine versus the original 1.9 liter light-duty automotive turbodiesel studied by ORNL. Exhaust flow rate and temperature data for the heavy-duty engine were obtained from Southwest Research Institute (SwRI) for a range of steady-state engine speeds and loads without EGR. Because of the considerably higher exhaust gas flow rates of the heavy-duty engine, relative to the engine tested by ORNL, a different heat exchanger type was considered in order to keep exhaust pressure drop within practical bounds.
Journal Article

The Energy Management for Solar Powered Vehicle Parking Ventilation System

2015-04-14
2015-01-0149
In summer, when vehicle parks in direct sunlight, the closed cabin temperature would rise sharply, which affects the occupants step-in-car comfort Solar powered vehicle parking ventilation system adopts the solar energy to drive the original ventilator. Thus, the cabin temperature could be dramatically decreased and the riding comfort could be also improved. This research analyzed the modified crew cabin thermal transfer model. Then the performance of the solar powered ventilation system is analyzed and optimized combined with the power supply characteristics of the photovoltaic element. The storage and reuse of the solar power is achieved on condition that the cabin temperature could be steadily controlled. The research shows that, the internal temperature is mainly affected by the solar radiation intensity and the environment temperature.
Technical Paper

Research on Braking Energy Recovery Strategy of Pure Electric Vehicle

2021-10-11
2021-01-1264
With the increasingly serious global environmental and energy problems, as well as the increasing number of vehicles, pure electric vehicles with its advantages of environmental protection, low noise and renewable energy, become an effective way to alleviate environmental pollution and energy crisis. Due to the current pure electric vehicle power battery technology is not perfect, the range of pure electric vehicle has a great limit. Through the braking energy recovery, the energy can be reused, the energy utilization rate can be improved, and the battery life of pure electric vehicles can be improved. In this paper, a pure electric vehicle is taken as the analysis object, and the whole vehicle analysis model is built. Through the comparative analysis, based on the driver's braking intention and vehicle running state, the braking energy recovery control strategy of double fuzzy control is proposed.
Technical Paper

Parameter Optimization of Off-Road Vehicle Frame Based on Sensitivity Analysis, Radial Basis Function Neural Network, and Elitist Non-dominated Sorting Genetic Algorithm

2021-08-10
2021-01-5082
The lightweight design of a vehicle can save manufacturing costs and reduce greenhouse gas emissions. For the off-road vehicle and truck, the chassis frame is the most important load-bearing assembly of the separate frame construction vehicle. The frame is one of the most assemblies with great potential to be lightweight optimized. However, most of the vehicle components are mounted on the frame, such as the engine, transmission, suspension, steering system, radiator, and vehicle body. Therefore, boundaries and constraints should be taken into consideration during the optimal process. The finite element (FE) model is widely used to simulate and assess the frame performance. The performance of the frame is determined by the design parameters. As one of the largest components of the vehicle, it has a lot of parameters. To improve the optimum efficiency, sensitivity analysis is used to narrow the range of the variables.
Technical Paper

Research on Solar Thermal Energy Warming Diesel Engine Based on Reverse Heat Transfer of Coolant

2020-04-14
2020-01-1343
In winter, the temperature of the coldest month is below -20°C. Low temperature makes it difficult to start a diesel engine, combust sufficiently, which increases fuel consumption and pollutes the environment. The use of an electric power-driven auxiliary heating system increases the battery load and power consumption. Solar thermal energy has the advantages of easy access, clean and pollution-free. The coolant in the cylinder block of the diesel engine has a large contact area within the cylinder and is evenly distributed, which can be used as a heat transfer medium for the warm-up. A one-dimensional heat transfer model of the diesel engine block for the coolant warm-up is developed, and the total heat required for the warm-up is calculated by an iterative method in combination with the warm-up target.
Technical Paper

Impact Simulation and Structural Optimization of a Vehicle CFRP Engine Hood in terms of Pedestrian Safety

2020-04-14
2020-01-0626
With the rapidly developing automotive industry and stricter environmental protection laws and regulations, lightweight materials, advanced manufacturing processes and structural optimization methods are widely used in body design. Therefore, in order to evaluate and improve the pedestrian protection during a collision, this paper presents an impact simulation modeling and structural optimization method for a sport utility vehicle engine hood made of carbon fiber reinforced plastic (CFRP). Head injury criterion (HIC) was used to evaluate the performance of the hood in this regard. The inner panel and the outer panel of CFRP hood were discretized by shell elements in LS_DYNA. The Mat54-55 card was used to define the mechanical properties of the CFRP hood. In order to reduce the computational costs, just the parts contacted with the hood were modeled. The simulations were done in the prescribed 30 impact points.
Technical Paper

Real-time and Accurate Estimation of Road Slope for Intelligent Speed Planning System of Commercial Vehicle

2020-04-14
2020-01-0115
In the intelligent speed planning system, real-time estimation of road slope is the key to calculate slope resistance and realize the vehicles’ active safety control. However, if the road slope is measured by the sensor while the commercial vehicle is driving, the vibration of the vehicle body will affect its measurement accuracy. Therefore, the relevant algorithm is used to estimate the real-time slope of the road when the commercial vehicle is driving. At present, many domestic and foreign scholars have analyzed and tested the estimation of road slope by the least square method or Kalman filter algorithm. Although the two methods both can achieve the estimation, the real-time performance and accuracy still need to be improved. In this paper, for traditional fuel commercial vehicle, the Kalman filter algorithm based on the kinematics and the extended Kalman filter algorithm based on the longitudinal dynamics are respectively used to estimate the road slope.
Technical Paper

An Image Recognition Application Method for Vertical Movement of Vehicles

2020-04-14
2020-01-0733
In ITS, image processing technology is applied to a wide variety of areas such as visual-based intelligent vehicle navigation, visual-based traffic monitoring and visual-based traffic management. In the recognition system of the vehicle body characteristics, most of the recognition is the license plate and the car emblem, etc. This paper proposes an image recognition application method for the vertical motion of the car while driving, mainly including vertical height detection and vertical displacement velocity acceleration recognition. The edge detection model of the image object is established by using the gray image to obtain the car motion segmentation image. At the same time, an image length and actual length coordinate conversion model is established, which can calculate an arbitrary actual length of the image object. In this paper, Yuejin Shangjun X500 van was selected as the test vehicle, and the video data was captured with a camera.
Technical Paper

Engine Cycle Simulation and Development Engine of a Gasoline

2007-10-29
2007-01-4103
In order to acquire low fuel consumption while the engine is running at low speeds and maintain the high power output of the traditional 4-valve engine at high speeds, multiple camshafts were applied in gasoline engines. An engine cycle simulation process of a gasoline engine with multiple camshaft profiles was presented in this paper. Engine cycle models were set up to describe external characteristic at 14 different speeds. A one-dimension model was used to describe the transient heat and mass transfer in pipes of the gasoline engine. In-cylinder combustion model was calibrated by engine test results. The simulation results showed a good agreement with engine testing results. Simulation and experimental research showed the volumetric efficiency and torque were low from 2500rpm to 3500rpm. Some parametrical study was presented for performance improvement of intermediate speeds, including changing induction-pipe length and putting off multiple camshafts shift.
Technical Paper

The Application of the PUREM SCR System on YC6L350-40 HD Diesel Engine

2007-07-23
2007-01-1935
In order to meet the Euro IV HD diesel engine emission standard legislation limits, an efficient SCR system is adopted for PM optimized YC6L350-40 HD diesel engine serving in China. This paper presents tests made on the engine. The engine had base NOx emission of 8.8g/kwh over the ESC and 8.7g/kwh over the ETC. Outfitted with a 24.7 liter 300cpsi SCR catalyst, the engine NOx emission dropped to 3.2g/kwh over the ESC and 3.5g/kwh over the ETC.
Technical Paper

Analysis and Evaluation of the Urban Bus Driving Cycle on Fuel Economy

2007-07-23
2007-01-2073
On-road testing of driving performance of the urban bus was carried out, and a representative urban bus driving cycle was developed after on-road testing, according to the test results. Then, the vehicle simulation software AVL CRUISE was used to simulate the dynamic behavior of the urban bus. It involves the simulation of complete drive train system and the driver behavior. The model is validated by comparing the results of the simulation to the results of the field test. Then the developed driving cycle is evaluated by fuel consumption resulted from the simulation and engine bench test on fuel economy.
Technical Paper

Hydrogen Fuel Cell Vehicles Technology and the Development Foreground

2009-04-20
2009-01-1015
The paper analyzes the technological features of hydrogen fuel cell vehicles, describes the changes that hydrogen fuel cell vehicles will bring to the automobile industry and the marketing modes, and proposes a brand-new marketing mode of “automobile supermarket”. It also introduces the opportunities and challenges that fuel cell technology will bring to the world energy technology, and puts forward a concept of “hydrogen energy network” to push the mutual development of both hydrogen fuel cell vehicles and hydrogen energy industry.
Technical Paper

Intelligent Control of Metal-belt CVT Based on Fuzzy Logic

2009-04-20
2009-01-1535
Operating level of a metal-belt CVT mainly rest with the ECU. Conventional control strategies which were obtained from tests or PID controller can not correspond to the driver’s intention or provide various driving environments. It is considered that control targets of metal-belt CVT could be distinguished by a speed ratio, line pressure and starting element till now. Running performance of automobile with a CVT mainly depends on the speed ratio control. An adapted fuzzy logic ratio control algorithm is suggested and optimized. A throttle position and its changing rate will be inputs of the FLC to meet the driver’s intention and make the intelligent control come true. A fuzzy logic line pressure control algorithm is also suggested and optimized corresponding to the complicated high line pressure control.
Technical Paper

Strength Analysis and Modal Analysis of Hydraulic Retarder

2009-10-06
2009-01-2896
Hydraulic retarder is one of main auxiliary braking devices of the vehicle. When the vehicle is braking, a great pressure from high-speed fluid is received by hydraulic retarder blades. It is difficult to predict rational hydraulic retarder strength, owing to the complexity of the internal flow of oil. An optimal calculation way of hydraulic retarder strength is proposed based on CFD and FEA, concluding a reasonable result. The 3-D model of hydraulic retarder is built in the general CAD software. The model of fluid passage is extracted, according to the condition when the whole flow passage is filled with oil, and imported to CFD software. The inner flow field of hydraulic retarder is analyzed and the hydraulic surface pressure distribution of the hydraulic retarder blade is obtained at the highest rotary speed of turbine wheel.
Technical Paper

Study on Diesel-LPG Dual Fuel Engines

2001-09-24
2001-01-3679
A new type of dual fuel supply system has been developed. This system is able to economically convert conventional diesel engines into dual-fuel engines like LPG/Diesel engines and CNG/Diesel engines, which are capable of either using single diesel fuel or using dual-fuel including both diesel and CNG fuel or both diesel and LPG fuel. These diesel-LPG engines have been applied to the diesel buses in the public transportation of Guangzhou city, one of the biggest cities in China, owning to their low soot emissions, excellent operating performances and extremely low cost as well. Compared with the diesel baseline engine, it was found that there were a significant reduction in soot emission and an improvement of the fuel consumption with the diesel-LPG engine. Also the strategy on LPG content is discussed in order to meet the demands for soot emission, fuel economy, transient performance and output power at the same time.
Technical Paper

The TEG Hot-End Heat Capacity’s Effect on the Power Output Stability for Harvesting Automobile Exhaust Energy

2017-03-28
2017-01-0160
While the car ownership increasing all over the world, the unutilized thermal energy in automobile exhaust system is gradually being realized and valued by researchers around the world for better driving energy efficiency. For the unexpected urban traffic, the frequent start and stop processes as well as the acceleration and deceleration lead to the temperature fluctuation of the exhaust gas, which means the unstable hot-end temperature of the thermoelectric module generator (TEG). By arranging the heat conduction oil circulation at the hot end, the hot-end temperature’s fluctuation of the TEG can be effectively reduced, at the expense of larger system size and additional energy supply for the circulation. This research improves the TEG hot-end temperature stability by installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, none energy consumption and light weight.
Technical Paper

Over-the-Horizon Safety Speed Warning System for Heavy-Duty Vehicle in Mountain Areas

2017-03-28
2017-01-0091
The mountainous roads are rugged and complex, so that the driver can not make accurate judgments on dangerous road conditions. In addition, most heavy vehicles have characteristics of large weight and high center of gravity. The two factors above have caused most of the car accidents in mountain areas. A research shows that 90% of car accidents can be avoided if drivers can respond within 2-3 seconds before the accidents happen. This paper proposes a speed warning scheme for heavy-duty vehicle over the horizon in mountainous area, which can give the drivers enough time to respond to the danger. In the early warning aspect, this system combines the front road information, the vehicle characteristics and real-time information obtained from the vehicle, calculates and forecasts the danger that may happen over the horizon ahead of time, and prompts the driver to control the vehicle speed.
Technical Paper

Color Variable Speed Limit Sign Visibility for the Freeway Exit Driving Safety

2017-03-28
2017-01-0085
Typical vehicle speed deceleration occurs at the freeway exit due to the driving direction change. Well conducting the driver to control the velocity could enhance the vehicle maneuverability and give drivers more response time when running into potential dangerous conditions. The freeway exit speed limit sign (ESLS) is an effect way to remind the driver to slow down the vehicle. The ESLS visibility is significant to guarantee the driving safety. This research focuses on the color variable ESLS system, which is placed at the same location with the traditional speed limit sign. With this system, the driver could receive the updated speed limit recommendation in advance and without distraction produced by eyes contract change over the dashboard and the front sight. First, the mathematical model of the drivetrain and the engine brake is built for typical motor vehicles. The vehicle braking characteristics with various initial speeds in the deceleration area are studied.
Technical Paper

Safe Travelling Speed of Commercial Vehicles on Curves Based on Vehicle-Road Collaboration

2017-03-28
2017-01-0080
Mountain road winding and bumpy, traffic accidents caused by speeding frequently happened, mainly concentrated on curves. The present curve warning system research are based on Charge-coupled Device, but the existing obstacles, weather , driving at night and road conditions directly affect the accuracy and applicability. The research is of predictability to identify the curves based on the geographic information and can told the driver road information and safety speed ahead of the road according to the commercial vehicle characteristic of load, and the characteristics of the mass center to reduce the incidence of accidents. In this paper, the main research contents include: to estimate forward bend curvature through the node classification method based on the digital map.
X