Refine Your Search

Topic

null

Search Results

Technical Paper

Optimal Management of Charge and Discharge of Electric Vehicles Based on CAN Bus Communication

2020-04-14
2020-01-1297
With the shortage of energy and the continuous development of automotive technology, electric vehicles are gradually gaining popularity. The energy of electric vehicles mainly comes from the power grid, and its large-scale use is inseparable from the support of the power system. However, electric vehicles consume power quickly, have short driving ranges, and frequently charge, and there are plenty of problems such as disorder and randomness in charging, which is not conducive to rational planning of the power grid. Optimizing the charging problem of electric vehicles can not only save power resources but also bring huge economic benefits to operators of charging stations. In this paper, the CAN bus communication protocol, combined with GPS positioning, LabVIEW monitoring, GPRS transmitting and other technical means, can realize the information exchange of the "vehicle-charging device-distribution network".
Technical Paper

Research on Solar Thermal Energy Warming Diesel Engine Based on Reverse Heat Transfer of Coolant

2020-04-14
2020-01-1343
In winter, the temperature of the coldest month is below -20°C. Low temperature makes it difficult to start a diesel engine, combust sufficiently, which increases fuel consumption and pollutes the environment. The use of an electric power-driven auxiliary heating system increases the battery load and power consumption. Solar thermal energy has the advantages of easy access, clean and pollution-free. The coolant in the cylinder block of the diesel engine has a large contact area within the cylinder and is evenly distributed, which can be used as a heat transfer medium for the warm-up. A one-dimensional heat transfer model of the diesel engine block for the coolant warm-up is developed, and the total heat required for the warm-up is calculated by an iterative method in combination with the warm-up target.
Journal Article

Boiling Coolant Vapor Fraction Analysis for Cooling the Hydraulic Retarder

2015-04-14
2015-01-1611
The hydraulic retarder is the most stabilized auxiliary braking system [1-2] of heavy-duty vehicles. When the hydraulic retarder is working during auxiliary braking, all of the braking energy is transferred into the thermal energy of the transmission medium of the working wheel. Theoretically, the residual heat-sinking capability of the engine could be used to cool down the transmission medium of the hydraulic retarder, in order to ensure the proper functioning of the hydraulic retarder. Never the less, the hydraulic retarder is always placed at the tailing head of the gearbox, far from the engine, long cooling circuits, which increases the risky leakage risk of the transmission medium. What's more, the development trend of heavy load and high speed vehicle directs the significant increase in the thermal load of the hydraulic retarder, which even higher than the engine power.
Technical Paper

Parameter Optimization of Two-Speed AMT Electric Vehicle Transmission System

2020-04-14
2020-01-0435
At present, many electric vehicles are often equipped with only a single-stage final drive. Although the single-stage speed ratio can meet the general driving requirements of electric vehicles, if the requirements of the maximum speed and the requirements for starting acceleration or climbing are met at the same time, the power demand of the drive motor is relatively large, and the efficient area of the drive motor may be far away from the operating area corresponding to daily driving. If the two-speed automatic transmission is adopted, the vehicle can meet the requirements of maximum speed, starting acceleration and climbing at the same time, reduce the power demand of the driving motor, and improve the economy under certain power performance. This is especially important for medium and large vehicles.
Technical Paper

Research on the Performance of Battery Thermal Management System Based on Optimized Arrangement of Flat Plate Heat Pipes

2020-04-14
2020-01-0162
The thermal management system is essential for the safe and long-term operation of the power battery. The temperature difference between the individual cells exceeds the acceleration of the battery performance, which leads to battery out of use and affects the performance of the vehicle. Compared with the low heat transfer coefficient of the air-cooling system, the complex structure of the liquid-cooling system and the large quality of phase change material system, the heat pipe has high thermal conductivity, strong isothermal performance and light weight, it’s an efficient cooling element that can be used for thermal management. In this study, the flat plate heat pipe(FPHP) is used to manage the temperature of the battery, through experiments, the optimized placement of the flat heat pipe is obtained.
Technical Paper

Heavy Truck Driveline Components Modeling and Thermal Analyzing

2009-10-06
2009-01-2905
In heavy truck driveline system, the components often include clutch, transmission, transfer case, drive shaft, etc. A fluid torque converter could be equipped in front of the transmission in order to improve the starting performance. Meanwhile, a hydraulic retarder could be introduced for auxiliary braking so as to adapt the truck to the brake on long downgrade in mountainous regions. Thus, the driveline heat load would have a notable increase. Both the fluid torque converter and the hydraulic retarder would produce a large quantity of heat, and a special cooling system is needed for adjusting the transmission fluid temperature with which the gains are potentially very large [1]. The heat load for driveline is often calculated based on empirical formula. For the heavy truck, however, if the heat value is underestimated, driveline components would suffer from overheated damage.
Technical Paper

Co-simulation Based Hydraulic Retarder Braking Control System

2009-10-06
2009-01-2907
Hydraulic retarder has been widely applied on military vehicles and heavy commercial vehicles because of it could provide great brake torque and has lasting working time [1]. In order to reduce driver's frequent actions in braking process and prevent hydraulic retarder system from overheating, it is need to apply constant braking torque control, this control target has a strict requirement to hydraulic control system design. Many parameters often require repeated test to determine, which increases the R&D cost and extends the research cycle. This paper tries to find a time-efficient research method of hydraulic retarder control system through studying on a heavy military vehicle hydraulic retarder system. Hydraulic retarder model is set up through test data. The hydraulic control system is built based on AMESim. Controller model is set up based on PID control. The whole vehicle brake model is built based on MATLAB/Simulink.
Technical Paper

The TEG Hot-End Heat Capacity’s Effect on the Power Output Stability for Harvesting Automobile Exhaust Energy

2017-03-28
2017-01-0160
While the car ownership increasing all over the world, the unutilized thermal energy in automobile exhaust system is gradually being realized and valued by researchers around the world for better driving energy efficiency. For the unexpected urban traffic, the frequent start and stop processes as well as the acceleration and deceleration lead to the temperature fluctuation of the exhaust gas, which means the unstable hot-end temperature of the thermoelectric module generator (TEG). By arranging the heat conduction oil circulation at the hot end, the hot-end temperature’s fluctuation of the TEG can be effectively reduced, at the expense of larger system size and additional energy supply for the circulation. This research improves the TEG hot-end temperature stability by installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, none energy consumption and light weight.
Technical Paper

Over-the-Horizon Safety Speed Warning System for Heavy-Duty Vehicle in Mountain Areas

2017-03-28
2017-01-0091
The mountainous roads are rugged and complex, so that the driver can not make accurate judgments on dangerous road conditions. In addition, most heavy vehicles have characteristics of large weight and high center of gravity. The two factors above have caused most of the car accidents in mountain areas. A research shows that 90% of car accidents can be avoided if drivers can respond within 2-3 seconds before the accidents happen. This paper proposes a speed warning scheme for heavy-duty vehicle over the horizon in mountainous area, which can give the drivers enough time to respond to the danger. In the early warning aspect, this system combines the front road information, the vehicle characteristics and real-time information obtained from the vehicle, calculates and forecasts the danger that may happen over the horizon ahead of time, and prompts the driver to control the vehicle speed.
Technical Paper

Color Variable Speed Limit Sign Visibility for the Freeway Exit Driving Safety

2017-03-28
2017-01-0085
Typical vehicle speed deceleration occurs at the freeway exit due to the driving direction change. Well conducting the driver to control the velocity could enhance the vehicle maneuverability and give drivers more response time when running into potential dangerous conditions. The freeway exit speed limit sign (ESLS) is an effect way to remind the driver to slow down the vehicle. The ESLS visibility is significant to guarantee the driving safety. This research focuses on the color variable ESLS system, which is placed at the same location with the traditional speed limit sign. With this system, the driver could receive the updated speed limit recommendation in advance and without distraction produced by eyes contract change over the dashboard and the front sight. First, the mathematical model of the drivetrain and the engine brake is built for typical motor vehicles. The vehicle braking characteristics with various initial speeds in the deceleration area are studied.
Technical Paper

Safe Travelling Speed of Commercial Vehicles on Curves Based on Vehicle-Road Collaboration

2017-03-28
2017-01-0080
Mountain road winding and bumpy, traffic accidents caused by speeding frequently happened, mainly concentrated on curves. The present curve warning system research are based on Charge-coupled Device, but the existing obstacles, weather , driving at night and road conditions directly affect the accuracy and applicability. The research is of predictability to identify the curves based on the geographic information and can told the driver road information and safety speed ahead of the road according to the commercial vehicle characteristic of load, and the characteristics of the mass center to reduce the incidence of accidents. In this paper, the main research contents include: to estimate forward bend curvature through the node classification method based on the digital map.
Technical Paper

Energy Saving Analysis of Vehicle Hydraulic Retarder Thermal Management System Based on Rankine Cycle

2016-09-18
2016-01-1941
Vehicle hydraulic retarders are applied in heavy-duty trucks and buses as an auxiliary braking device. In traditional cooling systems of hydraulic retarders, the working fluid is introduced into the heat exchanger to transfer heat to the cooling liquid in circulation, whose heat is then dissipated by the engine cooling system. This prevents the waste heat of the working fluid from being used effectively. In hydraulic retarder cooling system based on the Organic Rankine Cycle, the organic working fluid first transfers heat with the hydraulic retarder working fluid in Rankine cycle, and then outputs power through expansion machine. It can both reduce heat load of the engine cooling system, and enhance thermal stability of the hydraulic retarder while recovering and utilizing braking energy. First of all, according to the target vehicle model, hydraulic retarder cooling system model based on Rankine cycle is established.
Technical Paper

Study on Commercial Vehicle ECR Thermal Management System

2016-09-18
2016-01-1935
With the continuous increasing requirements of commercial vehicle weight and speed on highway transportation, conventional friction brake is difficult to meet the braking performance. To ensure the driving safety of the vehicle in the hilly region, the eddy current retarder (ECR) has been widely used due to its fast response, lower prices and convenient installation. ECR brakes the vehicle through the electromagnetic force generated by the current, and converted vehicle mechanical energy into heat through magnetic field. Air cooling structure is often used in the traditional ECR and cooling performance is limited, which causes low braking torque, thermal recession, and low reliability and so on. The water jacket has been equipped outside the eddy current region in this study, and the electric ECR is cooled through the water circulating in the circuit, which prolongs its working time.
Technical Paper

Research on Matching for the Rankine Cycle Evaporate-condensate System of Hydraulic Retarder

2016-09-18
2016-01-1938
The hydraulic retarder is an auxiliary braking device used for commercial vehicle in a long slope brake, and its transmission oil generates a lot of heat in its working process. If the heat of transmission doesn’t go through a reasonable management, it will seriously affect the braking performance of hydraulic retarder. To cool down the transmission oil, it will aggravates the load of the engine cooling system, and the long cooling path sometimes causes heat exchange not timely. When the Rankine cycle is used for cooling the hydraulic retarder transmission oil in virtue of its good heat transfer performance in phase change process, it can make the transmission oil temperature controlled more stable. In this new system, the setting parameters of the Evaporate-condensate system will affect the stability of the transmission oil temperature in the hydraulic retarder inlet and the energy recovery efficiency of the system.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

Effect of Temperature on Braking Efficiency Stability of Magnetorheological Fluid Auxiliary Braking Devices

2017-09-17
2017-01-2510
Fluid auxiliary braking devices can provide braking torque through hydraulic damping, fluid auxiliary braking devices can also convert vehicular inertia energy into transmission fluid heat energy during the braking, which can effectively alleviate the work pressure of the main brake. Traditional hydraulic auxiliary braking devices use transmission fluids to transmit torque, however, there is a certain lag effect during the braking. The magnetorheological fluid (MR fluid) can also be used to transmit torque because it has the advantages of controlling braking torque linearly and responding fast to the magnetic field changed. The temperature of MR fluid will increase when the vehicle is engaged in continuous braking. MR fluid temperature changes will cause a bad influence on the efficiency stability of auxiliary braking.
Technical Paper

Brake Guidance System for Commercial Vehicles with Coordinated Friction and Engine Brakes

2017-09-17
2017-01-2508
Using friction brakes for long time can increase easily its temperature and lower vehicle brake performance in the downhill process. The drivers' hysteretic perception to future driving condition could mislead them to stop untimely the engine brake, and some other auxiliary braking devices are designed to increase the brake power for reduction of the friction brake torque. The decompression engine brake has complex structure and high cost, and the application of eddy current retarder or hydraulic retarder on the commercial vehicles is mainly limited to their cost and mass. In this paper, an innovative brake guidance system for commercial vehicles with coordinated friction brakes and engine brake is introduced to guide the drivers to minimize the use of the friction brakes on the downhill with consideration of future driving conditions, which is aimed at releasing the engine brake potential fully and controlling the friction brake temperature in safe range.
Technical Paper

The Effect of Commercial Vehicle Head-Up Display Reminding System on Driving Safety in Mountainous Area

2017-09-17
2017-01-2500
Head-up Display (HUD) system can avoid drivers’ distraction on dashboard and effectively reduce collisions caused by emergency events, which is gradually being realized by researchers around the world. However, the current HUD only displays information like speed, fuel consumption, other information like acceleration and braking can’t be displayed yet. This research will use the indicator symbol‘s color and position change to remind drivers to brake or accelerate. Drivers can do driving operation timely and accurately. The system has the advantages of safety, intuition and real-time. The vehicle safe speed is calculated according to the road parameters, like adhesion coefficient and slope, and vehicle parameters, such as vehicle mass and centroid. Then, the appropriate braking operations are obtained by combining the vehicle driving state. The braking information is corresponded to the color and position change of the indicator symbol to prompt the drivers by the HUD interface.
Technical Paper

Study on the Effects of Magnetic Field on Magnetorheological Fluid Hydraulic Retarder Braking Torque

2017-09-17
2017-01-2503
In order to ensure driving safety, heavy vehicles are often equipped with hydraulic retarder, which provides sustained, stable braking torque and converts the vehicle kinetic energy into heat taken away by the cooling system when traveling on a long downhill. The conventional hydraulic retarder braking torque is modulated by adjusting the liquid filling rate, which leads to slow response and difficult control. In this paper, a new kind of magnetorheological (MR) fluid hydraulic retarder is designed by replacing the traditional transmission oil with MR fluid and arranging the excitation coils outside the working chamber. The braking torque can be controlled by the fluid viscosity of MR fluid with the variation of magnetic field. Compared with the traditional hydraulic retarder, the system has the advantages of fast response, easy control and high adjustment sensitivity.
Technical Paper

Combined Hill Descent Braking Strategy for Heavy Truck in the Featured-Slope

2017-09-17
2017-01-2535
The continuous braking for the brake drum will cause the brake thermal decay when the heavy truck is driving down the long slope in the mountain areas. It reduces the heavy truck’s braking performance and the braking safety. The engine braking and the hydraulic retarder braking both consume the kinetic energy of the heavy truck and can assist the truck driving in the mountain areas. This research proposes a combined hill descent braking strategy for heavy truck based on the recorded information of the slopes to ensure the braking safety of the heavy truck. The vehicle dynamic model and the brake drum temperature rising model are established to analyze the drum’s temperature variation during the downhill progress of the heavy truck. Then based on the slope information, the combined braking temperature variation is analyzed considering the characteristics of the engine braking, the drum braking and the hydraulic retarder braking.
X