Refine Your Search

Topic

Search Results

Journal Article

Friction Measurement of Al-17%Si Monolithic Cylinder with using Newly Developed Floating Liner Device

2014-11-11
2014-32-0052
The improvement of fuel consumption is the most important issue for engine manufactures from the viewpoint of energy and environment conservation. A piston-cylinder system plays an important role for the reduction of an engine friction. For the improvement of the frictional behavior of the piston-cylinder system, it is beneficial to observe and analyze the frictional waveforms during an engine operation. To meet the above-mentioned demand, frictional waveforms were measured with using the renewed floating liner device. In the newly developed floating liner device, an actual cylinder block itself was used as a test specimen. The measured single cylinder was an aluminum monolithic type made of hypereutectic Al-17%Si alloy using a high pressure die casting process. The combined piston was a light weight forged piston and a DLC coated piston ring was used. For the measurement, 110cc air cooled single cylinder engine was used.
Technical Paper

Study on Characteristics of Gasoline Fueled HCCI Using Negative Valve Overlap

2006-11-13
2006-32-0047
Gasoline fueled Homogeneous Charge Compression Ignition (HCCI) combustion with internal exhaust gas re-circulation using Negative Valve Overlap (NOL) was investigated by means of calculation and experiment in order to apply this technology to practical use with sufficient operating range and with acceptable emission and fuel consumption. In this paper we discuss the basic characteristics of NOL-HCCI with emphasis on the influence of intake valve timing on load range, residual gas fraction and induction air flow rate. Emission and fuel consumption under various operation conditions are also discussed. A water-cooled 250cc single cylinder engine with a direct injection system was used for this study. Three sets of valve timing were selected to investigate the effect of intake valve opening duration. Experimental results demonstrated that an engine speed of approximately 2000rpm yields an NMEP (Net Mean Effective Pressure) range from 200kPa to 400kPa.
Technical Paper

Motorcycle Engine Development System by Using a Test Bed with Simulation Technology

2006-11-13
2006-32-0103
With the hope of efficient and sophisticated motorcycle engine development, an engine test bed that can simulate vehicle running conditions using an ultra-low inertia motor and high response load control system was constructed, and was applied to the development of engines. By combining an exhaust gas analyzer, an exhaust gas constant volume sampler (CVS), and a data processing system, mass emissions could be measured in various test cycles. This system's advantages for data repeatability and test efficiency compared with a chassis test using a vehicle were confirmed. An acceleration test was conducted to assess running performance, and good agreement with actual driving values was confirmed. In addition, by measuring and evaluating engine response to throttle manipulation, it was possible to evaluate driveability on the test bed. These test findings indicate that this test bed can simulate vehicle driving tests with the engine only and will be a useful tool in engine development.
Technical Paper

Analysis of Cyclic Variations of Combustion in High Compression Ratio Boosted D.I.S.I. Engine by Ion-Current Probes and CFD

2009-04-20
2009-01-1484
Regarding S.I. gasoline engine, it is one of the most important matters to eliminate cyclic variation of combustion. Especially with high compression ratio and high boosted engine, the difficulties increase more. This paper describes the analysis of combustion process precisely by using many ion-current probes and CFD with the unique approaches. The number of used ion-current probes is 80 and they are mounted on whole combustion chamber wall especially including moving intake and exhaust valve faces. Thus cyclic variations of flame propagation can be measured precisely under high compression ratio and high boosted conditions in a multi-cylinder engine. In addition, CFD combustion simulation is conducted through full four strokes of continuous nine cycles. Moreover air motion and pressure vibration in intake and exhaust manifolds in whole cycles are considered. These unique approaches have made CFD result correspond to the measurement result of cyclic variations of actual combustion.
Technical Paper

Study of bonded valve-seat system (BVS)

2000-06-12
2000-05-0144
The Bonded Valve Seat System is the latest technology to realize drastic reduction in valve temperature in SI engines characterized by the good thermal conductivity of extremely thin valve seats bonded directly on the aluminum cylinder head. A unique and highly rationalized resistance bonding technique was developed to maintain adequate bonding strength and positioning precision in a short bonding period of around one second. Engineering data on optimization of bonding-section geometry, valve seat material and the surface treatment and bonding parameters were presented and discussed regarding the mechanism. The geometry of the bonding section of the cylinder head was optimized by FEM analysis so that the aluminum material should deform to embed the valve seat ring with the action of expelling the surface contamination and the oxide film. The bonding facility was modified so that the electrode axis should move flexibly according to distortion of the cylinder head during bonding.
Technical Paper

Light Body for Small Vehicles Using High-Quality Die-Casting Component

2003-10-27
2003-01-2869
A high-quality die-casting technology has been developed for lightweight aluminum frame structures that produces high-strength aluminum parts that are also weldable. This new technology has been used in casting frames for motorcycles and snowmobiles and has enabled improved frame designs with far fewer component parts than was possible before. This die-casting technology also results in a significant reduction in energy consumption during the manufacturing process.
Technical Paper

Reduction of Circuit Inductance in Motor Controllers for Electric Vehicles

2003-01-15
2003-32-0065
1 Research was conducted on reduction of circuit inductance for the purpose of reducing the surge voltage generated during switching by FET (field effect transistor / semiconductor device) in the power modules of motor controllers for golf carts (Fig. 1) and other electric vehicles. The motor control system is composed of the battery, the motor controller, the motor, and the wirings that connect them, and the inductance exists in them altogether. It became clear from simulation analysis and measurements from a prototype that only the inductance within the motor controller among these composition parts influences the surge voltage. And it became clear that there is a correlation between surge voltage and the sum of the inductance of the electrolytic capacitor inside the power module and the inductance of the circuit by which current is supplied from the electrolytic capacitor to the FET.
Technical Paper

Analyses of Cycle-to-Cycle Variation of Combustion and In-Cylinder Flow in a Port Injection Gasoline Engine Using PIV and PLIF Techniques

2017-10-08
2017-01-2213
Reduction in the cycle-to-cycle variation (CCV) of combustion in internal combustion engines is required to reduce fuel consumption, exhaust emissions, and improve drivability. CCV increases at low load operations and lean/dilute burn conditions. Specifically, the factors that cause CCV of combustion are the cyclic variations of in-cylinder flow, in-cylinder distributions of fuel concentration, temperature and residual gas, and ignition energy. However, it is difficult to measure and analyze these factors in a production engine. This study used an optically accessible single-cylinder engine in which combustion and optical measurements were performed for 45 consecutive cycles. CCVs of the combustion and in-cylinder phenomena were investigated for the same cycle. Using this optically accessible engine, the volume inside the combustion chamber, including the pent-roof region can be observed through a quartz cylinder.
Technical Paper

The Investigation of Mixture Formation and Combustion with Port Injection System by Visualization of Flame and Wall Film

2011-08-30
2011-01-1887
Mixture formation is one of the most important factors for the combustion in the spark ignition engine with port fuel injection. The relation between combustion and mixture quality, however, is not quantitatively well established. In this study, the connection of combustion and mixture formation was explored with various measurement techniques. Borescopes were used in order to investigate the flame propagation in the combustion chamber and behavior of spray and fuel film on the wall in the intake port. For the purpose of investigation on the effect of mixture formation, various port fuel injection systems and parameters were tested and compared: direction, timing, and size of droplet. An SI engine for small vehicle was used under condition of 4 000 rpm. The investigation by images obtained has shown that inhomogeneity of mixture causes low combustion stability, especially due to direct introduction of fuel droplets into the combustion chamber.
Technical Paper

An Experimental Study of Connecting Rod Big Ends

1995-02-01
950202
Connecting rod design factors, such as geometric shape, capscrew torque and materials can significantly affect bore distortion and assembly stress. In this paper, experiments using different materials were conducted on several connecting rod big-ends with various shapes, bosses and bolts. The results show that the distortion of the big-end bore and the bolt stress are influenced considerably by the big-end shape, the bolt axial tension and the material under inertia force. It was also observed that the bolt bending stress and the load separating the big-end joint surface could be calculated with high accuracy using three-dimensional FEM in the initial connecting rod design.
Technical Paper

Reduction of Friction Loss through the Use of Rolling Big-End Bearings

1995-09-01
951793
We compared motoring friction loss, output performance at WOT (wide open throttle) and specific fuel consumption of big-end bearings on engines having identical specifications between the case of using plain bearings and rolling bearings to investigate the effect of the lubricating oil supply rate on these parameters in an attempt to improve output through reduction of friction loss for big-end bearings of small, high-output motorcycle engines. Testing was performed using a 125 cc, 4-cycle, single cylinder engine at high engine speeds mainly above 10,000 rpm.
Technical Paper

Development of Computerized Lubrication System of 2-Stroke Gasoline Engines for Exhaust Smoke Reduction

1995-09-01
951800
YAMAHA MOTOR CO., LTD. has developed the YCLS system described in this report. The YCLS provides electrical support for a mechanical oil pump to offset its disadvantage. This system can reduce oil consumption at low engine speeds. As a result, it achieves its aim of reducing exhaust smoke, thus improving the dirty image of 2-stroke gasoline engines. Since the system reduces oil consumption in actual operation, it can be said that the technology contributes to resource saving.
Technical Paper

Improvement of Two-Stroke Engine Performance with the Yamaha Power Valve System (YPVS)

1981-09-01
810922
In two-stroke engines, the exhaust port timing has a great effect on engine performance characteristics. If the exhaust port timing can be varied in response to variations in the engine speed, an extensive improvement of performance can be realized. The Yamaha Power Valve System (YPVS) increases engine output with a valve which operates in the exhaust passage; this valve controls exhaust port timing in response to engine speed, despite the extremely high thermal load encountered in the exhaust passage. This literature deals with the construction and operation principles of YPVS and its effect on the increase of engine output. Also discussed is a series of tests and measurements made on the delivery ratio and trapping efficiency in order to elucidate why engine output is increased.
Technical Paper

L.D.V. Measurements of Pipe Flows in a Small-Two-Cycle Spark-lgnition Engine

1984-02-01
840425
A laser Doppler velocimeter is used to measure in real time the velocities of pipe flows in a crankcase-scavenged small two-cycle engine with piston and reed valves. Consequently the optical windows in each pipe must be exchanged instantly by using rotary window systems. The flows in both the inlet and exhaust pipes show different patterns in the motored and firing conditions, but the flows in the scavenging pipe are in a similar pattern regardless of the operating conditions.
Technical Paper

Improvement of Fuel Consumption with Variable Exhaust Port Timing in a Two-Stroke Gasoline Engine

1985-02-01
850183
In this study, an improvement of fuel consumption by changing the exhaust timing of a two-stroke engine has been made. The study results revealed that a remarkable improvement of fuel economy is possible by controlling the exhaust timing according to the engine speed. The reason for the better fuel economy was clarified through an analysis of exhaust gases, theoretical cycle calculations, and an analysis of combustion pressure. As an example of actual application, the results of tests made on an engine equipped with Yamaha power Valve System (YPVS), which is a variable exhaust timing mechanism using a tabor-shaped valve, will also be discussed.
Technical Paper

Valve Motion Simulation Method for High-Speed Internal Combustion Engines

1985-02-01
850179
Abnormal valve gear vibration is a perennial problem confronting the designer of high-performance 4-stroke engines. It would shorten time and reduce costs if an analytical method could be applied to the prediction of engine valve behavior. This paper describes a method of valve motion simulation for both SOHC and DOHC valve gears through interactive calculation and using computer graphics. The authors tried to set up as simple a simulation model as possible by using modal analysis and modeling techniques. Through setting simulation model parameters and experimental damping factors, a close correlation between calculated and actually measured results was found.
Technical Paper

Optimization of Multi-Valve Four Cycle Engine Design-The Benefit of Five-Valve Technology

1986-02-01
860032
THE MULTI-VALVE FOUR STROKE CYCLE engine design trend is Coward increased engine power and higher fuel efficiency. While a four-valve system is the most common direction, problems occur when the valve area is widened by increasing the cylinder bore for a higher engine output. The layout of four larger valves causes the combustion chamber shape to flatten and the combustion time period to increase. In pursuit of the optimum multi-valve engine we have studied four, five, six and seven-valve per cylinder design. Performance targets and design constraints led us toward the successful five-valve engine technology. This technology develops high engine torque and efficient combustion over a wide range of engine speeds.
Technical Paper

Combustion Noise of Two-Stroke Gasoline Engines and its Reduction Techniques

1989-05-01
891125
In order to obtain more reduction of two-stroke motorcycle engine noise than usual, it becomes necessary to make improvements within the combustion process itself. This study was carried out for two objectives. One is the investigation of the relationship between combustion and noise, and the other one is the development of noise reduction techniques. As the result, it was discovered that there was a significant correlation between engine noise and (dP/dθ)max, called the maximum rate of cylinder pressure rise. Therefore, the reduction of the (dP/dθ) max was recognized to be effective for engine noise reduction. The optimized alteration of combustion chamber shape is the most effective noise reduction technique, because it is able to reduce (dP/dθ) max without any sacrifice of engine power. In fact, the level of noise reduction can be predicted by one of the parameters obtained from the combustion chamber shape.
Technical Paper

The Relationship Between Port Shape and Engine Performance for Two-Stroke Engines

1999-09-28
1999-01-3333
Measurement using a three-dimensional anemometric-tester was made for the gas flow inside the cylinder of a two-stroke engine while the shape of the transfer port was modified. The relationship between port shape and engine performance was investigated for various factors that characterize the flow in cylinder. In this paper, we focused mainly on two engine running conditions: the maximum output at 11750 rpm and the output at 10000 rpm. As a result, we found that the maximum output is most related to the tangential inclination angles of the main transfer port, and the inner vent radius of the main transfer duct.
Technical Paper

04 Emission Reduction by Cylinder Wall Injection in 2-Stroke S.I. Engines

2002-10-29
2002-32-1773
A direct injection system in which fuel was injected through the cylinder wall was developed and detailed investigation was made for the purpose of reducing short-circuit of fuel in 2-stroke engines. As a result of dynamo tests using 430cc single cylinder engine, it was found that the injector was best attached at a location as close to TDC as possible on the rear transfer port side, and that the entire amount of fuel should be injected towards the piston top surface. Emissions were worsened if fuel was injected towards the exhaust port or spark plug. Although the higher injection pressure resulted in large emissions reduction effects, it did not have a significant effect on fuel consumption. When a butterfly exhaust valve, known to be effective against irregular combustion in the light load range, was applied, it was found to lead to further reductions in HC emission and fuel consumption while also improving combustion stability.
X