Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Analysis Process for Truck Fuel Efficiency Study

2015-09-29
2015-01-2778
Medium- and Heavy Duty Truck fuel consumption and the resulting greenhouse gas (GHG) emissions are significant contributors to overall U.S. GHG emissions. Forecasts of medium- and heavy-duty vehicle activity and fuel use predict increased use of freight transport will result in greatly increased GHG emissions in the coming decades. As a result, the National Highway Traffic Administration (NHTSA) and the United States Environmental Protection Agency (EPA) finalized a regulation requiring reductions in medium and heavy truck fuel consumption and GHGs beginning in 2014. The agencies are now proposing new regulations that will extend into the next decade, requiring additional fuel consumption and GHG emissions reductions. To support the development of future regulations, a research project was sponsored by NHTSA to look at technologies that could be used for compliance with future regulations.
Journal Article

An Efficient, Durable Vocational Truck Gasoline Engine

2016-04-05
2016-01-0660
This paper describes the potential for the use of Dedicated EGR® (D-EGR®) in a gasoline powered medium truck engine. The project goal was to determine if it is possible to match the thermal efficiency of a medium-duty diesel engine in Class 4 to Class 7 truck operations. The project evaluated a range of parameters for a D-EGR engine, including displacement, operating speed range, boosting systems, and BMEP levels. The engine simulation was done in GT-POWER, guided by experimental experience with smaller size D-EGR engines. The resulting engine fuel consumption maps were applied to two vehicle models, which ran over a range of 8 duty cycles at 3 payloads. This allowed a thorough evaluation of how D-EGR and conventional gasoline engines compare in fuel consumption and thermal efficiency to a diesel. The project results show that D-EGR gasoline engines can compete with medium duty diesel engines in terms of both thermal efficiency and GHG emissions.
Technical Paper

Diesel Combustion Mode Switching - A Substantial NVH Challenge

2009-05-19
2009-01-2080
Tier 2, bin 5 diesel engines may use multiple combustion modes to achieve stringent emissions requirements. Unfortunately, switching between different combustion modes can cause step changes in noise that will be unacceptable to consumers. In this paper, several sound quality metrics are evaluated for their ability to quantify the NVH issues that arise during a rich pulse event. In addition, techniques are presented that allow an engine developer to reduce the NVH effects caused by changing combustion modes. Careful calibration tuning in close cooperation with performance and emissions development engineers is required to solve noise problems that arise from combustion mode switching events, since an NVH improvement may often come at the expense of a performance or emissions issue.
X