Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A New Miniaturized Sensor for Ultra-Fast On-Board Soot Concentration Measurements

2017-03-28
2017-01-1008
In this article we present a design of a new miniaturized sensor with the capacity to measure exhaust particle concentrations on board vehicles and engines. The sensor is characterized by ultra-fast response time, high sensitivity, and a wide dynamic range. In addition, the physical dimensions of the sensor enable its placement along the exhaust line. The concentration response and temporal performance of a prototype sensor are discussed and characterized with aerosol laboratory test measurements. The sensor performance was also tested with actual engine exhaust in both chassis and engine dynamometer measurements. These measurements demonstrate that the sensor has the potential to meet and even exceed any requirements around the world in terms of on-board diagnostic (OBD) sensitivity and frequency of monitoring.
Journal Article

A New Constant Dilution Ratio Concept for Vehicle and Engine Exhaust Particle Sampling

2008-04-14
2008-01-0762
This paper presents a new concept of a partial flow sampling system (PFSS), involving a two-stage dilutor which operates at underpressure, while exhaust is sampled through a capillary. The sample flowrate is in the order of few cubic centimeters per minute. Due to the low flowrate, no tight fixation is required between the exhaust line and the capillary inlet. The dilutor may sample from an opening in the exhaust line which freely exhausts to ambient pressure. As a result, the PFSS operates at constant pressure conditions even upstream of diesel particle filters (DPF). A straightforward mathematical model is then developed to calculate the dilution ratio (DR), depending on the dilution air flowrate and the dilutor underpressure. The model is validated using CO2 as a trace gas, and a very good agreement is demonstrated between the calculated and the measured DR values.
Journal Article

Implications of Engine Start-Stop on After-Treatment Operation

2011-04-12
2011-01-1243
It is commonly accepted that future powertrains will be based to a large extent on hybrid architectures, in order to optimize fuel efficiency and reduce CO₂ emissions. Hybrid operation is typically achieved with frequent engine start-and-stops during real-world as well as during the legislated driving cycles. The cooling of the exhaust system during engine stop may pose problems if the substrate temperature drops below the light-off temperature. Therefore, the design and thermal management of after-treatment systems for hybrid applications should consider the 3-dimensional heat transfer problem carefully. On the other hand, the after-treatment system calculation in the concept design phase is closely linked with engine calibration, taking into account the hybridization strategy. Therefore, there is a strong need to couple engine simulation with 3d aftertreatment predictions.
Journal Article

Application of the Pegasor Particle Sensor for the Measurement of Mass and Particle Number Emissions

2013-04-08
2013-01-1561
The Pegasor Particle Sensor (PPS) is a small and lightweight sensor that can be used directly in raw exhaust to provide the mass and number concentration of exhaust aerosol. Its operation principle is based on the electrical charging of exhaust aerosol and determination of particle concentration by measuring the charge accumulated on the particles. In this paper we have applied the PPS in a variety of vehicle exhaust configurations to evaluate its performance characteristics. First, the output signal of the instrument was calibrated with diesel exhaust to deliver either the mass or the number concentration of exhaust aerosol. Linear response with the soot mass concentration measured by a Photo Acoustic Soot Sensor and number concentration measured by an Electrical Low Pressure Impactor was established.
Journal Article

Use of a Catalytic Stripper as an Alternative to the Original PMP Measurement Protocol

2013-04-08
2013-01-1563
The Particle Measurement Programme (PMP) developed an exhaust particle number measurement protocol that has been adopted by current light duty vehicle emission regulations in Europe. This includes thermal treatment of the exhaust aerosol to isolate solid particles only and a number counting device with a lower cutpoint of 23 nm to avoid measurement of smaller particles that may affect the repeatability of the measurement. In this paper, we examine a potential alternative to the PMP system, where the thermal treatment is replaced by a catalytic stripper (CS). This offers oxidation and not just evaporation of the volatile components. Alternative sampling systems, either fulfilling the PMP recommendations or utilizing a CS, have been explored in terms of their volatile particle removal efficiency. Tests have been conducted on diesel exhaust, diesel equipped with DPF and gasoline direct injection emissions.
Journal Article

Impact of FAME Content on the Regeneration Frequency of Diesel Particulate Filters (DPFs)

2014-04-01
2014-01-1605
Modern diesel vehicles utilize two technologies, one fuel based and one hardware based, that have been motivated by recent European legislation: diesel fuel blends containing Fatty Acid Methyl Esters (FAME) and Diesel Particulate Filters (DPF). Oxygenates, like FAME, are known to reduce PM formation in the combustion chamber and reduce the amount of soot that must be filtered from the engine exhaust by the DPF. This effect is also expected to lengthen the time between DPF regenerations and reduce the fuel consumption penalty that is associated with soot loading and regeneration. This study investigated the effect of FAME content, up to 50% v/v (B50), in diesel fuel on the DPF regeneration frequency by repeatedly running a Euro 5 multi-cylinder bench engine over the European regulatory cycle (NEDC) until a specified soot loading limit had been reached.
Technical Paper

Effect of Lube Oil on the Physicochemical Characteristics of Particulate Matter Emitted from a Euro 4 Light Duty Diesel Vehicle

2007-09-16
2007-24-0110
This paper investigates the effect of lubrication oil on the physical and chemical characteristics of the particulate matter (PM) emitted from a Euro 4 diesel vehicle. Two different lubrication oils were examined. A fully synthetic ACEA grade B3 service-fill oil of low sulfur content (1760 ppm wt.) falling into the OW-40 SAE viscosity grade and a mineral ACEA B2-98 motor oil of high sulfur (8890 ppm wt.), falling into the 15W-40 SAE viscosity grade. To exclude interferences from the fuel derived sulfur, a rather sulfur-free fuel (< 10 ppm wt.) was used in the experiments. The experiments included steady state tests, the certification cycle and real-world highspeed transient driving conditions. The properties measured included total particle mass collected on Teflon-coated filters, total particle number measured by a condensation particle counter, size distributions determined by a scanning mobility particle sizer.
Technical Paper

Effect of a DPF and Low Sulfur Lube Oil on PM Physicochemical Characteristics from a Euro 4 Light Duty Diesel Vehicle

2007-04-16
2007-01-0314
This paper studies the effect of a Catalyzed Diesel Particle Filter (CDPF) on the emission profile of a Euro 4 diesel vehicle operated on low sulfur fuel and lubrication oil. The vehicle was tested in its original configuration and with the CDPF retrofitted in place of its main underbody catalyst. Experiments included steady state tests, the certification cycle and real-world high speed transient driving conditions. Measurements included total particle mass collected on Teflon-coated filters, total particle number measured by a condensation particle counter, size distributions determined by a Scanning Mobility Particle Sizer and chemical analysis of the mass collected for elemental and organic carbon, ions, PAHs, and trace elements. Results showed that the vehicle complies with the Euro 4 emission limits when tested over the type-approval NEDC, but it emits more nitrogen oxides and, in some cases, more particulate matter when tested over real-world test cycles.
Technical Paper

Metal Foam Substrate for DOC and DPF Applications

2007-04-16
2007-01-0659
A new metal foam material for diesel particulate filtration, trademarked as INCOFOAM® HighTemp, was recently presented. Extensive tests showed the potential of achieving filtration efficiencies of the order of 85% or more at low pressure drop using a radial flow design concept with graded foam porosity. By applying a catalytic washcoat, the foam exhibits enhanced gas mixing and thus higher conversion efficiencies at high space velocities. In addition, due to an excellent soot-catalyst contact, the washcoated foam exhibited high catalytic regeneration rates. The present paper focuses on a novel “cross-flow” design concept for a better filtration/pressure drop trade-off as well as application of the foam as an oxidation catalyst substrate. The experimental testing starts from small-scale reactors and proceeds to real exhaust testing on the engine bench as well as vehicle tests on the chassis dynamometer and on-road testing.
Technical Paper

Effect of Speed and Speed-Transition on the Formation of Nucleation Mode Particles from a Light Duty Diesel Vehicle

2007-04-16
2007-01-1110
This work studies the formation of nucleation mode (NM) particles from a Euro 3 passenger car operating on 280 ppm wt. sulfur fuel, during on-road plume chasing and in the laboratory. The vehicle produced a distinct NM when its speed exceeded 100 km/h in both sampling environments. A higher particle number (up to 8 times) after 4 min at constant speed was measured when this speed was approached from a lower than from a higher speed. The variability in the measurement of NM particles was explained using literature information on sulfur-to-sulfate conversion over a catalyst and, in particular, on the extent and rate of sulfate storage and release mechanisms. All evidence led to the conclusion that storage and release processes take several minutes to conclude after a step-wise change in speed and have significant implications in the total particle number measurements during steady-speed testing.
Technical Paper

Experimental Evaluation of the Fuel Consumption and Emissions Reduction Potential of Low Viscosity Lubricants

2009-06-15
2009-01-1803
Reducing fuel consumption and emissions from road transport is a key factor for tackling global warming, promoting energy security and sustaining a clean environment. Several technical measures have been proposed in this aspect amongst which the application of low viscosity engine lubricants. Low viscosity lubricants are considered to be an interesting option for reducing fuel consumption (and CO2 emissions) throughout the fleet in a relatively cost effective way. However limited data are available regarding their actual “real-world” performance with respect to CO2 and other pollutant emissions. This study attempts to address the issue and to provide experimental data regarding the benefit of low viscosity lubricants on fuel consumption and CO2 emissions over both the type-approval and more realistic driving cycles.
Technical Paper

A Modeling and Experimental Investigation on an Innovative Substrate for DPF Applications

2010-04-12
2010-01-0891
XP-SiC is an innovative type of a porous substrate material on the basis of a reaction formed SiC for DPF applications. The high porosity, large pore size inside the cell wall and low specific weight are the special characteristics of this substrate. The aim of the current paper is to present an investigation based on the experimental and modeling approaches to evaluate the back pressure, filtration efficiency and the thermal durability. The latter one was assessed by measuring and predicting the temperature field, as well as calculating the thermal stresses. For this purpose the filter was modeled in the commercial computational code axitrap as a stand-alone tool, in which the conservation equations of mass continuity, momentum, energy and species were solved. The soot filtrations, loading as well as the regeneration by fuel-borne catalyst were modeled.
Technical Paper

Modeling and Experimental Study of Uncontrolled Regenerations in SiC Filters with Fuel Borne Catalyst

2004-03-08
2004-01-0697
The objective of this paper is to study the parameters affecting the evolution of “uncontrolled” regeneration in diesel particulate filters with fuel-borne catalyst (FBC) support with emphasis on the development of thermal stresses critical for filter durability. The study is based on experiments performed on engine dynamometer, corresponding to “worst-case” scenario, as well as on advanced, multi-dimensional mathematical modeling. A new 2-dimensional mathematical model is presented which introduces an additional dimension across the soot layer and wall. With this dimension it is possible to take into account the variability of catalyst/soot ratio in the layer and to compute intra-layer composition gradients. The latter are important since they induce interesting O2 diffusion phenomena, which affect the regeneration evolution.
Technical Paper

Reaction and Diffusion Phenomena in Catalyzed Diesel Particulate Filters

2004-03-08
2004-01-0696
The objective of this study is to explain the physical and chemical mechanisms involved in the operation of a catalyzed diesel particulate filter. The study emphasizes on the coupling between reaction and diffusion phenomena (with emphasis on NO2 “back-diffusion”), based on modeling and experimental data obtained on the engine dynamometer. The study is facilitated by a novel multi-dimensional mathematical model able to predict both reaction and diffusion phenomena in the filter channels and through the soot layer and wall. The model is thus able to predict the species concentration gradients in the inlet/outlet channels, in the soot layer and wall, taking into account the effect of NO2 back diffusion. The model is validated versus engine dyno measurements. Two sets of measurements are employed corresponding to low-temperature “controlled” regenerations as well as high-temperature “uncontrolled” conditions.
Technical Paper

Performance Evaluation of a Novel Sampling and Measurement System for Exhaust Particle Characterization

2004-03-08
2004-01-1439
This paper presents a novel partial flow sampling system for the characterization of airborne exhaust particle emissions. The sampled aerosol is first conditioned in a porous dilutor and then subsequent ejector dilutors are used to decrease its concentration to the range of the instrumentation used. First we examine the sensitivity of aerosol properties to boundary sampling conditions. This information is then used to select suitable sampling parameters to distinguish both the nucleation and the accumulation mode. Selecting appropriate sampling parameters, it is demonstrated that a distinct nucleation mode can be formed and measured with different instruments. Using these parameters we examine the performance of the system over transient vehicle operation. Additionally, we performed calculations of particle losses in the various components of the system which are then used to correct signals from the instruments.
Technical Paper

A Novel Method for the Experimental Evaluation of Fuel-Borne Catalyst Effect on the Soot Auto-Ignition

2002-03-04
2002-01-0429
A novel method for the evaluation of fuel-borne catalysts effect on DPF regeneration temperature is presented. The method is simple and allows for the in-situ determination of the regeneration temperature. It consists of the engine and trap preconditioning, the trap loading cycle and the regeneration phase. The repeatability of the method is better than ±1% of average value measured. The method is capable of distinguishing very low concentrations of the metal catalyst. The application of the method with different concentrations of the same catalyst does not require the use of fresh traps. For the evaluation of different catalysts however it is recommended to use a fresh trap, since the prescribed preconditioning is not capable of eliminating the effects of the previous additive.
Technical Paper

Particle Emissions Characteristics of Different On-Road Vehicles

2003-05-19
2003-01-1888
Due to the stringent emission standards set worldwide, particulate matter (PM) emissions from diesel vehicles have been significantly curtailed in the last decade, and are expected to be reduced even further in the future. This evolution has brought forward two main issues: whether PM emissions should only be regulated for diesel vehicles and whether gasoline powered vehicles can be further neglected from PM emission inventories. This paper addresses these issues comparing the characteristics of particle emissions from a current diesel passenger car, a gasoline one and two small two-wheelers. It is shown that the gasoline car is a negligible source of particle emissions while the two-wheelers may be even more significant particle sources than the diesel car.
Technical Paper

Modeling the Interactions Of Soot and SCR Reactions in Advanced DPF Technologies with Non-homogeneous Wall Structure

2012-04-16
2012-01-1298
The pressure for compact and efficient deNO systems has led to increased interest of incorporating SCR coatings in the DPF walls. This technology could be very attractive especially if high amounts of washcoat loadings could be impregnated in the DPF porous walls, which is only possible with high porosity filters. To counterbalance the filtration and backpressure drawbacks from such high porosity applications, the layered wall technology has already been proposed towards minimizing soot penetration in the wall and maximizing filtration efficiency. In order to deal with the understanding of the complex interactions in such advanced systems and assist their design optimization, this paper presents an advanced modeling framework and selected results from simulation studies trying to illustrate the governing phenomena affecting deNO performance and passive DPF regeneration in the above combined systems.
Technical Paper

Applicability of the Pegasor Particle Sensor to Measure Particle Number, Mass and PM Emissions

2013-09-08
2013-24-0167
The Pegasor Particle Sensor (PPS) has been earlier presented by Ntziachristos et al. (SAE Paper 2011-01-0626) as a novel small and robust instrument that can be directly installed in the exhaust line to measure exhaust particles without any dilution. The instrument is based on the electrical detection of aerosol. It is increasingly being used to measure exhaust particles from engines and vehicles with different exhaust configurations. In this study, a number of tests have been conducted using two sensors in parallel, one directly installed in the tailpipe and one installed in the CVS, side by side to the PM sampling filter. Aim of the study was to make recommendations on the proper use of the sensor and to check how the sensor signal compares to particulate mass, soot concentration, and particle number. A first finding is that external heating has to be provided to the sensor to avoid condensation.
Technical Paper

SCR System Optimization and Control Supported by Simulation Tools

2013-04-08
2013-01-1075
The successful design and especially the control of the SCR system is a challenging process that can be supported by the application of simulation tools. As a first step, we employ physico-chemically informed ‘off-line’ models that are calibrated with the help of targeted small- and full-scale tests. Despite their high level of sophistication, this SCR model is able to be integrated in a control-oriented simulation software platform and connected to other powertrain simulation blocks. The target is to use this simulation platform as a virtual environment for the development and optimization of SCR control strategies. The above process is demonstrated in the case of a passenger car SCR. The model is calibrated at both fresh and aged catalyst condition and validated using experimental data from the engine bench under a wide variety of operating conditions. Next, the calibrated model was coupled with embedded control models, developed for Euro 6 passenger car powertrains.
X