Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Elastohydrodynamic Lubrication Damping of Spiral Bevel Gears at Moderate Loads

2015-06-15
2015-01-2173
Modeling of elastohydrodynamic lubrication phenomena for the spiral bevel gears is performed in the present study. The damping and the friction coefficient generated from the lubricated contact area will have profound effects on the dynamics of spiral bevel gears. Thus the damping value generated from this friction model will be time varying. This makes the use of constant and empirical damping value in the dynamics of spiral bevel gears questionable. The input geometric and kinematic data required for the elastohydrodynamic lubrication (EHL) simulations are obtained using Tooth Contact Analysis. A full numerical elastohydrodynamic lubrication simulations are carried out using asymmetric integrated control volume (AICV) algorithm to compute the contact pressures. The fast Fourier transform is used to calculate the elastic deformations on the gear surfaces due to contact load.
Technical Paper

Optimization of Hypoid Gear Tooth Profile Modifications on Vehicle Axle System Dynamics

2019-06-05
2019-01-1527
The vehicle axle gear whine noise and vibration are key issues for the automotive industry to design a quiet, reliable driveline system. The main source of excitation for this vibration energy comes from hypoid gear transmission error (TE). The vibration transmits through the flexible axle components, then radiates off from the surface of the housing structure. Thus, the design of hypoid gear pair with minimization of TE is one way to control the dynamic behavior of the vehicle axle system. In this paper, an approach to obtain minimum TE and improved dynamic response with optimal tooth profile modification parameters is discussed. A neural network algorithm, named Back Propagation (BP) algorithm, with improved Particle Swarm Optimization (PSO) is used to predict the TE if some tooth profile modification parameters are given to train the model.
Technical Paper

Crankshaft Rumble Noise Phenomenon: Experimental Characterization of Source Strength and Path Response

1999-05-17
1999-01-1770
A series of system level experiments were conducted using 2 vehicles of identical design to measure, analyze and quantify crank rumble noise from the viewpoint of source strength and path dynamic response. One of the vehicles was known to produce relatively severe crank rumble response (noisy), while the second vehicle was almost free of the annoying response (quiet). Two specific operating conditions most susceptible to crank rumble noise were of interest: (1) no load snaps in neutral and (2) hard acceleration in second gear. For each condition, the vibration and sound pressure responses throughout the vehicle were obtained. The measured data was analyzed critically to determine frequency content and strength of rumble noise at each location. Calculations were also performed from the measured data to determine the modes of transmission and the relative contributions from air-borne and structure-borne paths.
X