Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Study on the Effects of Spray Impingement and Turbulence Structure on Spray Mixing Rate by Gas Jet Simulation

1996-02-01
960775
The effects of jet impingement and turbulence structure on jet mixing rate arc investigated by using a simultaneous measurement system of concentration and velocity. It is found that, after the end of injection, dispersion of momentum of a CO2 jet Is much faster than that of concentration. The residual gas is then left in a rather quiescent atmosphere, that makes a sluggish mixing process of the residual gas. Jet impingement can create intensive air motion in the near impingement region, that promotes the mixing of the residual gas. However, the effect of jet impingement decreases as the distance from the impingement point increases.
Technical Paper

A Promising High Efficiency RM-HCCI Combustion Proposed by Detail Kinetics Analysis of Exergy Losses

2015-04-14
2015-01-1751
To explore the exergy loss of engine combustion process, entropy generations were numerically analyzed through detailed chemical kinetics. It revealed that the reformed fuel with simpler molecular tended to produce lower combustion irreversibility. Furthermore, a promising high efficiency RM- HCCI (Reformed molecule HCCI) combustion principle was proposed. In a RM-HCCI engine, hydrocarbon fuels were reformed into small molecule fuels under high temperature and low/no oxygen atmosphere before injection into the cylinder when the exhaust gas enthalpy to a certain extent was recovered, further improving the engine efficiency. The second law efficiency (η2nd) of a RM-HCCI combustion with a CR of 10 can be increased from 36.78% to 45.47% by coordination of multiple control parameters, and to 67.79% by raising CR from 10 to 100.
X