Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Guidelines for Integration of Kinetic Energy Recovery System (KERS) based on Mechanical Flywheel in an Automotive Vehicle

2010-05-05
2010-01-1448
In order to increase overall energy efficiency of road vehicles, new systems that are able to recover vehicle's kinetic energy usually lost in dissipating process of frictional braking are being developed. This study was done to look at the effects of integrating Mechanical Flywheel-based Kinetic Energy Recovery System (KERS) into an automotive vehicle. Possible system architectures, due to different connection point of the KERS into the vehicle driveline, were proposed and investigated. Interaction of the system main components (IC engine, vehicle Gearbox, KERS subsystems) was analyzed and explained. In particular, three plots are proposed to introduce a graphical representation that can help the project manager to understand the effect of different parameter values related to the main system components on the overall system behavior during energy transfer from the vehicle to KERS and back.
Technical Paper

Ethanol to Gasoline Ratio Detection via Time-Frequency Analysis of Engine Acoustic Emission

2012-09-10
2012-01-1629
In order to reduce both polluting emissions and fuel costs, many countries allow mixing ethanol to gasoline either in fixed percentages or in variable percentages. The resulting fuel is labeled E10 or E22, where the number specifies the ethanol percentage. This operation significantly changes way the stoichiometric value, which is the air-to-fuel mass ratio theoretically needed to completely burn the mixture. Ethanol concentration must be correctly estimated by the Engine Management System to optimally control exhaust emissions, fuel economy and engine performance. In fact, correct fuel quality recognition allows estimating the actual stoichiometric value, thus allowing the catalyst system to operate at maximum efficiency in any engine working point. Moreover, also other essential engine control functions should be adapted in real time by taking into account the quality of the fuel that is being used.
Technical Paper

Thermal Management Strategies for SCR After Treatment Systems

2013-09-08
2013-24-0153
While the Diesel Particulate Filter (DPF) is actually a quasi-standard equipment in the European Diesel passenger cars market, an interesting solution to fulfill NOx emission limits for the next EU 6 legislation is the application of a Selective Catalytic Reduction (SCR) system on the exhaust line, to drastically reduce NOx emissions. In this context, one of the main issues is the performance of the SCR system during cold start and warm up phases of the engine. The exhaust temperature is too low to allow thermal activation of the reactor and, consequently, to promote high conversion efficiency and significant NOx concentration reduction. This is increasingly evident the smaller the engine displacement, because of its lower exhaust system temperature (reduced gross power while producing the same net power, i.e., higher efficiency).
X