Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Method for Determining and Presenting Driver Visibility in Commercial Vehicles

2007-10-30
2007-01-4232
Driver visibility from commercial vehicles is often an issue in post-accident litigation. While the visibility through the windows of most vehicles is restricted due to the required structure of the vehicle itself, most manufacturers and users incorporate a series of mirrors to enhance driver visibility and to reduce blind spots. The challenge for an engineer is to first demonstrate what the driver could see to a reasonable degree of engineering certainty, and then to convey this information in a form that is easy for the lay person to grasp. This paper outlines procedures for calculating and modeling the driver visibility from commercial vehicles. The primary techniques presented require access to the vehicle, although the paper also presents techniques by which visibility can be analyzed through photogrammetry and 3-D computer models, both for the vehicle and for any mirrors incorporated onto the vehicle.
Technical Paper

Operation of the Eaton VORAD Collision Warning System and Analysis of the Recorded Data

2009-10-06
2009-01-2911
The Eaton VORAD Collision Warning System is utilized by many commercial trucking companies to improve and monitor vehicle and driver safety. The system is equipped with forward and side radar sensors that detect the presence and movements of vehicles around the truck to alert the driver of other vehicles' proximity. When the sensors detect that the host vehicle is closing on a vehicle ahead at a rate beyond a determined threshold, or that a nearby vehicle is located in a position that may be hazardous, the system warns the driver visually and audibly. The system also monitors parameters of the vehicle on which it is installed, such as the vehicle speed and turn rate, as well as the status of vehicle systems and controls. The monitored data is also recorded by the VORAD system and can be extracted in the event that the vehicle is involved in an accident.
Journal Article

A Naturalistic Study of Vehicle Acceleration and Deceleration at an Intersection

2022-03-29
2022-01-0825
Approaching an intersection and braking to a stop, as well as accelerating from a stop, is a common occurrence in daily life. While the experience is routine, the actual rate of deceleration and acceleration has not been analyzed from an orthogonal aerial perspective. The aerial perspective provides video footage that allows for accurate planar motion tracking and does not influence the drivers’ actions in any way. This paper examines the behavior of drivers at two separate signal light controlled intersections to determine both the rate at which they slow down to a stop, and also the rate at which they accelerate through the intersection after a signal change. The paper will also address the acceleration rate differences of vehicles who are first to reach the intersection in comparison to those that are directly behind another vehicle, as well as the lag in reaction between vehicles as they begin to accelerate from a stop.
X