Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Preliminary CFD Investigation of In-Cylinder Stratified EGR for Spark Ignition Engines

2002-05-06
2002-01-1734
High exhaust gas recirculation (EGR) tolerance is always pursued not only for its advantages of the pumping loss reduction and fuel economy benefit, but also for stringent emission requirements by using conventional three-way catalytic converter (TWC) instead of costly NOx trap. How to keep fresh charge and EGR separated in the cylinder of a conventional four valve gasoline engine is a critical challenge. This work establishes advanced user subroutines and overall simulation strategies to model engine in-cylinder turbulent flow, temperature, pressure, and EGR concentration fields and to simulate EGR stratification process in a typical pent-roof gasoline engine cylinder during intake and compression strokes.
Technical Paper

Numerical Study on Swirl-Type High-Dilution Stratified EGR Combustion System

2000-06-19
2000-01-1949
High-dilution stratified EGR combustion system operating at stoichiometric air-fuel ratio (A/F) could offer significant fuel economy saving comparable to the lean burn or stratified charge direct injection SI engines, while still complies with stringent emission standards by using the conventional three-way catalytic converter. The most critical challenge is to keep substantial separation between EGR gas and air-fuel mixture, or to minimize the mixing between these two zones to an acceptable level for stable and complete combustion. Swirl-type stratified EGR and air-fuel flow structure is considered desirable for this purpose, because the circular engine cylinder tends to preserve the swirl motion and the axial piston movement has minimal effect on the flow structure swirling about the same axis. In this study, KIVA3V was used to simulate mixing and combustion processes in a typical pent-roof gasoline engine cylinder during compression and expansion strokes.
Technical Paper

Multiphase Flow Simulations of Poppet Valve Noise and Vibration

2015-04-14
2015-01-0666
A deeper understanding of the complex phenomenology associated with the multiphase flow-induced noise and vibration in a dynamic valve is of critical importance to the automotive industry. To this purpose, a two-dimensional axisymmetric numerical model has been developed to simulate the complex processes that are responsible for the noise and vibration in a poppet valve. More specifically, an Eulerian multiphase flow model, a dynamic mesh and a user-defined function are utilized to facilitate the modeling of this complicated two-phase fluid-structure interaction problem. For a two-phase flow through the valve, our simulations showed that the deformation and breakup of gas bubbles in the gap between the poppet and the valve seat generates a vibration that arises primarily from the force imbalance between the spring and the two-phase fluid flow induced forces on the poppet.
Technical Paper

Bench Test Method for Fuel Tank Vent Valve Noise Induced by EVAP System Pressure Pulsation

2017-03-28
2017-01-0447
In gasoline Powertrain systems, the evaporative emission control (EVAP) system canister purge valve (CPV) can be actuated by pulse-width modulated (PWM) signals. The CPV is an electronically actuated solenoid. The PWM controlled CPV, when actuated, creates pressure pulsations in the system. This pulsation is sent back to the rest of the EVAP system. Given the right conditions, the fill limit vent valve (FLVV) inside the fuel tank can be excited. The FLVV internal components can be excited and produce noise. This noise can be objectionable to the occupants. Additional components within the EVAP system may also be excited in a similar way. This paper presents a bench test method using parts from vehicle’s EVAP system and other key fuel system components.
X