Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Evaluation of Spatially Resolved Performance of NOx Adsorber Catalysts

2009-04-20
2009-01-0275
A novel laboratory methodology has been developed and applied to evaluate performance of NOx Adsorber catalysts, based on the detailed analysis of micro-core samples obtained from various locations in a full-size catalyst. The technique includes a protocol for evaluating various aspects of NOx performance, as well as direct measurements of the amount of sulfur on the catalyst. This method was used to determine the NOx performance and distribution of sulfur loading on several engine aged catalysts. It showed the ability to differentiate poor NOx performance due to insufficient desulfation from that due to thermal degradation. This method further quantifies different forms of sulfur that are present on the catalyst. These forms of sulfur are distinguished by the temperature at which they are removed. In addition, the aspects of sulfur behavior that are important to this technique are discussed.
Technical Paper

Optimising the Low Temperature Performance and Regeneration Efficiency of the Continuously Regenerating Diesel Particulate Filter (CR-DPF) System

2002-03-04
2002-01-0428
As legislation tightens in the Heavy Duty Diesel (HDD) area it is essential to develop systems with high activity and excellent durability for both Particulate Matter (PM) and NOx control. The Continuously Regenerating Trap (CRT™) system controls hydrocarbon (HC), CO and PM emissions from HDD vehicles with efficiencies of over 90%, and has demonstrated very good field durability over distances exceeding 700,000 km. The system is widely used in Europe, and is demonstrating the same high performance and excellent durability within field applications in North America. The Continuously Regenerating Trap (CRT™) system has been developed and patented by Johnson Matthey [1]. Throughout this paper this system will be referred to as the Continuously Regenerating Diesel Particulate Filter, CR-DPF. The CR-DPF comprises an oxidation catalyst, optimised for NO2 generation from the engine-out NOx, and a downstream DPF.
Technical Paper

Sustained Low Temperature NOx Reduction

2018-04-03
2018-01-0341
Sustained NOx reduction at low temperatures, especially in the 150-200 °C range, shares some similarities with the more commonly discussed cold-start challenge, however, poses a number of additional and distinct technical problems. In this project, we set a bold target of achieving and maintaining 90% NOx conversion at the SCR catalyst inlet temperature of 150 °C. This project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015 and completed in 2017.
Technical Paper

Development of Emission Control Systems to Enable High NOx Conversion on Heavy Duty Diesel Engines

2014-04-01
2014-01-1525
Selective Catalytic Reduction (SCR) systems have been demonstrated as effective solutions for controlling NOx emissions from Heavy Duty diesel engines. Future HD diesel engines are being designed for higher engine out NOx to improve fuel economy, which will require increasingly higher NOx conversion to meet emission regulations. For future aftertreatment designs, advanced technologies such as SCR coated on filter (SCRF®) and SCR coated on high porous flow through substrates can be utilized to achieve high NOx conversion. In this work, different options were evaluated for achieving high NOx conversion. First, high performance NOx control catalysts were designed by using SCRF unit followed by additional SCR on high porosity substrates. Second, different control strategies were evaluated to understand the effect of reductant dosing strategy and thermal management on NOx conversion. Tests were carried out on a HD engine under transient test cycles.
X