Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Stability Analysis of Tandem Riding on Motorcycles

2006-11-13
2006-32-0095
This paper presents a stability analysis of tandem riding on a motorcycle, focusing especially on the effects of the passenger's positional behaviors. Firstly we experimentally investigate the motorcycle and rider control behavior after a posture change by the passenger. This is done by measuring the motorcycle's responses to posture changes by the passenger during straight running at low speed. The results reveal some characteristic behaviors. Second, we construct a multi-body model for a human-motorcycle system for tandem riding. By comparing experimental and simulated results, we have confirmed the validity of the model. Finally, we conduct simulations on some situations in which passenger properties are varied, and obtain the effects of these passenger characteristics.
Technical Paper

A Stiffness Optimization Procedure for Automobile Rubber Mounts

2001-04-30
2001-01-1445
Generally, it is well known that road noise generated by vibration from automobile tires and suspensions can be reduced by changing the stiffness of the rubber mounts installed in the suspension systems. Such stiffness, however, is rarely changed to avoid riding discomfort and so on. In this paper, a stiffness optimization method for suspension system rubber mounts that reduces road noise, and improves riding comfort as well, is presented. In the process, Road Noise Contribution Analysis (RNCA) is applied to the target vehicle to specify the major factors of road noise. Furthermore, the suspension system of the vehicle is investigated by Sensitivity Analysis using Measured FRF data (SAMF) to identify the optimal stiffness combination of rubber mounts. As a result, an effective stiffness combination of two mounts is specified to reduce road noise and to improve riding comfort.
Technical Paper

Construction of Sound Source Model for Diesel Engine Using New Method for Selecting Optimal Field Points in Inverse-Numerical Acoustic Analysis

2017-06-05
2017-01-1871
This paper describes new method for selecting optimal field points in Inverse-Numerical Acoustic analysis (INA), and its application to construction of a sound source model for diesel engines. INA identifies the surface vibration of a sound source by using acoustic transfer functions and actual sound pressures measured at field points located near the sound source. When measuring sound pressures with INA, it is necessary to determine the field point arrangement. Increased field points leads to longer test and analysis time. Therefore, guidelines for selecting the field point arrangement are needed to conduct INA efficiently. The authors focused on the standard deviations of distance between sound source elements and field points and proposed a new guideline for optimal field point selection in our past study. In that study, we verified the effectiveness of this guideline using a simple plate model.
Technical Paper

Application of the Contribution Analysis of the Vibration Source using Partial Coherence

2006-10-31
2006-01-3464
Operator comfort is an important design criteria for hydraulic excavators during working and idling conditions. An engine, a cooling fan motor and a pump are installed on a hydraulic excavator. It is hard to identify the vibration contribution to a response because three sources are synchronizingly working. This paper describes the use of partial coherence measurement techniques for source identification. And it is examined to reduce the vibration of the source component identified by the partial coherence results. Finally, it is verified that the response acceleration is effectively decreased by reducing the vibration of the identified component.
Technical Paper

Prediction of Vibration at Operator Position and Transfer Path Analysis Using Engine Multi Body Dynamics Model

2014-09-30
2014-01-2316
This paper describes a prediction of vibration and the transfer path analysis (TPA) using an engine multi body dynamics (MBD) model and measured frequency response functions (FRFs). TPA is used in order to analyze each contribution of vibration transfer paths. In the TPA, input forces from vibration source to passive part should be identified accurately. In the traditional TPA, an identification of input forces is done using only experimental results. Therefore, a parametric study to an improvement of a structure or an isolation system is impossible. In this study, the MBD model of engine is constructed, and input forces from engine to mainframe of agriculture machine are predicted. The accuracy of prediction is confirmed, compared with the results from the traditional TPA method. The contribution of each transfer path is analyzed, and the vibration levels of operator position are predicted using the measured FRFs and the simulated input forces.
Technical Paper

Placement Technique of Measurement Points for Inverse Acoustic Analysis

2015-11-17
2015-32-0747
This paper describes a measurement points' placement technique for the sound source identification using inverse acoustic analysis. In order to reduce noise in NVH problem for various kinds of machines including small size engine, it is necessary to identify the sound source. The inverse acoustic analysis is a technique that is effective for the sound source identification.[1,2] The inverse acoustic analysis identifies a surface vibration of an object by measuring the radiated sound and solving the inverse problem. Nakano et al. researched about the location of sound pressure measurement points for accurate improvement.[3] They clarified that the sound pressure measurement points on the concentric circle gave more accurate surface vibration than the measurement points on the square lattice.
Technical Paper

Natural Frequency Analysis of Tire Vibration Using a Thin Cylindrical Shell Model

2015-06-15
2015-01-2198
Early studies on the tire vibration characteristics of road noise focused on radial modes of vibration because these modes are dominant in vertical spindle force. However, recent studies of Noise, Vibration and Harshness (NVH) prediction have suggested that tire modeling not only of radial modes, but also of lateral vibration, including lateral translational and lateral bending modes, affect interior noise. Thus, it is important to construct tire dynamic models with few degrees of freedom for whole-vehicle analysis of NVH performance. Existing tire dynamics model can't express tire lateral vibrations. This paper presents a new approach for tire vibration analysis below 200Hz, and a formula for tire natural frequencies. First, a tire dynamic model is developed based on the thin cylindrical shell theory. Kinetic and potential energies are derived. Mode shape function is also derived by the assumption of inextensility in the neutral of the tread ring.
X